metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m746-m747

Tri­aqua-1κO,2κ2O-bis­­(2,2′-bi­pyridine)-1κ2N,N′;2κ2N,N′-chlorido-1κCl-μ-terephthalato-1:2κ2O1:O4-dicopper(II) nitrate monohydrate

aKey Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: louiyang@mail.nankai.edu.cn

(Received 7 April 2012; accepted 3 May 2012; online 12 May 2012)

In the binuclear title compound, [Cu2(C8H4O4)Cl(C10H8N2)2(H2O)3]NO3·H2O, the two crystallographically independent CuII ions have similar coordination environments. One of the CuII ions has a square-pyramidal arrangement, which is defined by a water mol­ecule occupying the apical position, with the equatorial ligators consisting of two N atoms from a 2,2′-bipyridine mol­ecule, one carboxyl­ate O atom from a terephthalate ligand and one O atom from a water mol­ecule. The other CuII ion has a similar coordination environment, except that the apical position is occupied by a chloride ligand instead of a water mol­ecule. An O—H⋯O and O—H⋯Cl hydrogen-bonded three-dimensional network is formed between the components.

Related literature

For related structures, see: Lo et al. (2000[Lo, S. M.-F., Chui, S. S.-Y., Shek, L.-Y., Lin, Z.-Y., Zhang, X.-X., Wen, G.-H. & Williams, I. D. (2000). J. Am. Chem. Soc. 122, 6293-6294.]); Xu et al. (2010[Xu, X.-X., Sang, X.-G., Liu, X.-X., Zhang, X. & Sun, T. (2010). Transition Met. Chem. 35, 501-506.]). For background on the use of terephthalic acid and bipyridine as ligands in metal–organic frameworks, see, respectively: Wang et al. (2010[Wang, X.-F., Zhang, Y.-B., Xue, W., Qi, X.-L. & Chen, X.-M. (2010). CrystEngComm, 12, 3834-3839.]); Zhang et al. (2010[Zhang, J., Bu, J.-T., Chen, S.-M., Wu, T., Zheng, S.-T., Chen, Y.-G., Nieto, R. A., Feng, P.-Y. & Bu, X.-H. (2010). Angew. Chem. Int. Ed. Engl. 49, 8876-8879.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H4O4)Cl(C10H8N2)2(H2O)3]NO3·H2O

  • Mr = 773.08

  • Triclinic, [P \overline 1]

  • a = 10.155 (2) Å

  • b = 11.204 (2) Å

  • c = 15.454 (3) Å

  • α = 76.34 (3)°

  • β = 83.61 (3)°

  • γ = 64.90 (3)°

  • V = 1547.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.])) Tmin = 0.750, Tmax = 0.750

  • 15250 measured reflections

  • 6973 independent reflections

  • 4651 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.172

  • S = 1.04

  • 6973 reflections

  • 412 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.85 2.00 2.534 (4) 120
O6—H6A⋯O2 0.86 1.91 2.511 (4) 126
O6—H6B⋯O8i 0.86 2.34 3.079 (4) 145
O6—H6B⋯O10i 0.86 2.14 2.923 (4) 151
O7—H7A⋯Cl1ii 0.85 2.53 3.325 (2) 156
O7—H7B⋯O10iii 0.86 2.06 2.869 (3) 157
O11—H11A⋯O8 0.86 2.26 3.119 (3) 176
O11—H11A⋯O9 0.86 2.42 3.038 (3) 129
O11—H11B⋯Cl1iv 0.84 2.39 3.227 (2) 173
Symmetry codes: (i) x, y-1, z+1; (ii) x+1, y-1, z; (iii) -x+1, -y, -z+1; (iv) -x, -y+2, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The assembly of mixed-ligand coordination polymers attracted intense attention not only because of their intriguingly complicated architecture, but also potential applications in adsorption, separation(Lo et al. 2000), magnetism(Xu et al. 2010), and so on. A feasible strategy is to resort to the synergetic coordination of the O-containing and the N-containing ligands. As a rigid and polydentate carboxylato ligand, terephthic acid is extensively used to assembly porous metal-organic-frameworks (Wang et al. 2010), while bipyridine ligand is a admirable ancillary ligand and has a conjugate system (Zhang et al. 2010). Herein, we synthesized a novel copper complex constructed by terephthalic acid in combination with 2,2'-bipyridine as ancillary ligand.

X-ray diffraction analysis reveals that the title complex crystallizes in the Triclinic group P-1. In a assymmetric unit, there are two crystallographically independent copper(II) ions, two terephthalic, two 2,2'-bipyridine moleculars, one nitrate anion, three coordination water and one lattice water molecular. The Cu1(II) ion is a five-coordinated square-pyramidal arrangement which is defined by one coordi nated water molecular occupying the apical position, while the equatorial plane are furnished by two nitrogen atoms from a 2,2'-bipyridine molecular, one carboxylate oxygen atom from terephthlic acid and one oxygen atom from a water molecular. The Cu2(II) ion has a similar coordination enviroment with the Cu1(II)ion except for the apical position occupied by one chlorine anion.Two Cu ions link up by one terephthalic ligand. Interestingly, the benzene ring of the terephthalic ligand has a strong π-π interations with the pyridine ring of 2,2'-bipyridine ligand in the adjacent molecular, which has a 3.355 Å distances between the paralleled faces.

Related literature top

For related structures, see: Lo et al. (2000); Xu et al. (2010). For background on the use of terephthalic acid and bipyridine as ligands in metal–organic frameworks, see, respectively: Wang et al. (2010); Zhang et al. (2010). [ok as edited?]

Experimental top

All chemicals were purchased and used without further purification. A mixture of terephtatic acid (0.5 mmol), 2,2'-bipyridine (0.5 mmol) and CuCl22H2O (1 mmol) was dissolved in 7 ml of distilled water and a drop of HNO3 was add under stirring. Then the resulting mixture was transfered in a 25 ml of Teflon-lined stainless autoclave at 180 °C for 5 days and then cooled to room temperature. Light-blue block crystals of the title compound was obtained.

Refinement top

Accurate unit-cell parameters were determined by a least-squares fit of 2θ values, and intensity data were measured on a rigaku r-axis rapid IP area detector with Mo Kα radiation (λ = 0.71073 Å) at room temperature. The intensities were corrected for Lorentz and polarization effects as well as for empirical absorption based on multi-scan technique; all structures were solved by direct methods and refined by full-matrix least-squares fitting on F2 by SHELX97(Sheldrick, 2008). All non-hydrogen atoms were refined with anisotropic thermal parameters(Sheldrick, 2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination enviroment of Cu in the complex with hydrogen atoms remove d for the clarity. Displacement ellipsoids are drawn at the 30% probability level.
Triaqua-1κO,2κ2O-bis(2,2'-bipyridine)- 1κ2N,N';2κ2N,N'-chlorido-1κCl- µ-terephthalato-1:2κ2O1:O4-dicopper(II) nitrate monohydrate top
Crystal data top
[Cu2(C8H4O4)Cl(C10H8N2)2(H2O)3]NO3·H2OZ = 2
Mr = 773.08F(000) = 788
Triclinic, P1Dx = 1.660 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.155 (2) ÅCell parameters from 9787 reflections
b = 11.204 (2) Åθ = 3.0–27.5°
c = 15.454 (3) ŵ = 1.53 mm1
α = 76.34 (3)°T = 293 K
β = 83.61 (3)°Block, blue
γ = 64.90 (3)°0.20 × 0.20 × 0.20 mm
V = 1547.1 (5) Å3
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
6973 independent reflections
Radiation source: fine-focus sealed tube4651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(Allen et al., 1991)
h = 1213
Tmin = 0.750, Tmax = 0.750k = 1414
15250 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0996P)2]
where P = (Fo2 + 2Fc2)/3
6973 reflections(Δ/σ)max = 0.001
412 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu2(C8H4O4)Cl(C10H8N2)2(H2O)3]NO3·H2Oγ = 64.90 (3)°
Mr = 773.08V = 1547.1 (5) Å3
Triclinic, P1Z = 2
a = 10.155 (2) ÅMo Kα radiation
b = 11.204 (2) ŵ = 1.53 mm1
c = 15.454 (3) ÅT = 293 K
α = 76.34 (3)°0.20 × 0.20 × 0.20 mm
β = 83.61 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
6973 independent reflections
Absorption correction: multi-scan
(Allen et al., 1991)
4651 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.750Rint = 0.041
15250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
6973 reflectionsΔρmin = 0.64 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7820 (5)0.0785 (4)0.9109 (3)0.0584 (11)
H10.70980.01580.87130.070*
C20.9029 (5)0.0580 (5)0.9167 (3)0.0695 (13)
H20.91340.01710.88120.083*
C31.0111 (5)0.1505 (5)0.9762 (4)0.0672 (13)
H31.09480.13830.98120.081*
C40.9918 (4)0.2604 (5)1.0278 (3)0.0582 (11)
H41.06150.32261.06900.070*
C50.8687 (4)0.2772 (4)1.0176 (2)0.0445 (9)
C60.8399 (4)0.3956 (4)1.0644 (2)0.0433 (9)
C70.9351 (4)0.5015 (4)1.1251 (3)0.0529 (10)
H71.02170.50101.13890.063*
C80.8985 (5)0.6078 (4)1.1646 (3)0.0604 (12)
H80.95890.67891.20680.072*
C90.7713 (5)0.6070 (5)1.1406 (3)0.0622 (12)
H90.74590.67841.16600.075*
C100.6826 (5)0.5008 (4)1.0793 (3)0.0567 (11)
H100.59750.50141.06310.068*
C110.3524 (4)0.0015 (4)0.8602 (2)0.0437 (9)
C120.2979 (4)0.1371 (4)0.8007 (2)0.0409 (8)
C130.3831 (4)0.2104 (4)0.7815 (2)0.0440 (9)
H130.47480.17420.80630.053*
C140.3321 (4)0.3363 (4)0.7260 (2)0.0469 (9)
H140.38900.38520.71460.056*
C150.1970 (4)0.3906 (4)0.6871 (2)0.0401 (8)
C160.1122 (4)0.3172 (4)0.7056 (2)0.0447 (9)
H160.02120.35300.67970.054*
C170.1612 (4)0.1924 (4)0.7615 (2)0.0460 (9)
H170.10330.14450.77350.055*
C180.1432 (4)0.5279 (4)0.6280 (2)0.0439 (9)
C190.1753 (5)1.0261 (4)0.4078 (3)0.0572 (11)
H190.08731.02150.42360.069*
C200.2627 (5)1.1375 (5)0.3472 (3)0.0660 (12)
H200.23481.20780.32370.079*
C210.3912 (5)1.1430 (5)0.3221 (3)0.0628 (12)
H210.44971.21570.28000.075*
C220.4321 (4)1.0399 (4)0.3602 (3)0.0562 (11)
H220.51961.04250.34520.067*
C230.3402 (4)0.9309 (4)0.4219 (2)0.0444 (9)
C240.3718 (4)0.8138 (4)0.4664 (3)0.0471 (9)
C250.4963 (4)0.7998 (5)0.4544 (3)0.0578 (11)
H250.56720.86600.41540.069*
C260.5148 (5)0.6861 (5)0.5011 (4)0.0688 (13)
H260.59760.67410.49330.083*
C270.4091 (5)0.5916 (5)0.5591 (3)0.0707 (14)
H270.41950.51460.59110.085*
C280.2876 (5)0.6112 (4)0.5696 (3)0.0612 (11)
H280.21730.54730.60990.073*
Cl10.17909 (11)0.86425 (11)0.67434 (7)0.0570 (3)
Cu10.59529 (5)0.23100 (4)0.95432 (3)0.04425 (17)
Cu20.09653 (5)0.75958 (5)0.53220 (3)0.04651 (17)
N10.7627 (3)0.1860 (3)0.9601 (2)0.0457 (7)
N20.7162 (3)0.3949 (3)1.0418 (2)0.0450 (7)
N30.2673 (3)0.7199 (3)0.5236 (2)0.0462 (7)
N40.2143 (3)0.9249 (3)0.4442 (2)0.0473 (8)
N50.3000 (4)0.6385 (4)0.1813 (2)0.0597 (10)
O10.4807 (3)0.0500 (3)0.88775 (19)0.0536 (7)
O20.2685 (3)0.0594 (3)0.8763 (2)0.0637 (9)
O30.0152 (3)0.5775 (3)0.59884 (19)0.0547 (7)
O40.2273 (3)0.5869 (3)0.6131 (2)0.0639 (9)
O50.0782 (3)0.7958 (3)0.5013 (2)0.0637 (9)
O60.4297 (3)0.2800 (3)0.9705 (2)0.0651 (9)
O70.6810 (2)0.31174 (19)0.82969 (13)0.0757 (9)
O80.3190 (2)0.73970 (19)0.16260 (13)0.1204 (16)
O90.2562 (2)0.60351 (19)0.25133 (13)0.183 (3)
O100.3218 (2)0.57418 (19)0.12290 (13)0.1219 (16)
O110.1857 (2)0.84194 (19)0.33688 (13)0.1176 (16)
H5A0.16360.75930.52200.141*
H5B0.08460.77470.45040.141*
H6A0.37140.24630.92650.141*
H6B0.37980.29361.01710.141*
H7A0.71690.28410.78050.141*
H7B0.68780.39030.82830.141*
H11A0.22650.81030.29050.141*
H11B0.18310.92000.32890.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (2)0.057 (3)0.072 (3)0.033 (2)0.004 (2)0.006 (2)
C20.069 (3)0.069 (3)0.090 (3)0.047 (3)0.006 (3)0.020 (3)
C30.045 (2)0.076 (3)0.100 (4)0.035 (2)0.006 (2)0.038 (3)
C40.038 (2)0.076 (3)0.068 (3)0.022 (2)0.0039 (19)0.031 (2)
C50.0328 (19)0.053 (2)0.050 (2)0.0153 (16)0.0002 (15)0.0207 (18)
C60.0358 (19)0.052 (2)0.0386 (18)0.0123 (16)0.0024 (15)0.0136 (17)
C70.040 (2)0.057 (2)0.051 (2)0.0039 (18)0.0099 (17)0.018 (2)
C80.062 (3)0.052 (2)0.044 (2)0.002 (2)0.0144 (19)0.003 (2)
C90.069 (3)0.056 (3)0.055 (2)0.025 (2)0.007 (2)0.004 (2)
C100.057 (3)0.049 (2)0.059 (2)0.025 (2)0.012 (2)0.008 (2)
C110.040 (2)0.0400 (19)0.0444 (19)0.0133 (16)0.0021 (15)0.0018 (17)
C120.040 (2)0.0375 (18)0.0428 (19)0.0143 (15)0.0020 (15)0.0071 (16)
C130.0378 (19)0.0365 (19)0.052 (2)0.0103 (15)0.0084 (16)0.0046 (17)
C140.047 (2)0.046 (2)0.051 (2)0.0242 (17)0.0042 (17)0.0021 (18)
C150.0408 (19)0.0366 (18)0.0383 (18)0.0124 (15)0.0001 (15)0.0063 (16)
C160.0362 (19)0.040 (2)0.051 (2)0.0108 (15)0.0090 (16)0.0032 (17)
C170.045 (2)0.044 (2)0.051 (2)0.0223 (17)0.0038 (17)0.0056 (18)
C180.038 (2)0.040 (2)0.048 (2)0.0117 (16)0.0022 (16)0.0053 (17)
C190.054 (2)0.055 (2)0.058 (2)0.025 (2)0.0182 (19)0.009 (2)
C200.075 (3)0.056 (3)0.057 (3)0.023 (2)0.012 (2)0.003 (2)
C210.059 (3)0.058 (3)0.050 (2)0.007 (2)0.017 (2)0.002 (2)
C220.043 (2)0.064 (3)0.052 (2)0.0077 (19)0.0133 (18)0.016 (2)
C230.038 (2)0.053 (2)0.0393 (18)0.0120 (17)0.0017 (15)0.0176 (17)
C240.039 (2)0.056 (2)0.049 (2)0.0161 (17)0.0027 (16)0.0249 (19)
C250.038 (2)0.076 (3)0.066 (3)0.020 (2)0.0041 (19)0.030 (2)
C260.044 (3)0.081 (3)0.096 (4)0.034 (2)0.005 (2)0.033 (3)
C270.069 (3)0.067 (3)0.094 (4)0.046 (3)0.015 (3)0.022 (3)
C280.055 (3)0.053 (2)0.077 (3)0.027 (2)0.002 (2)0.008 (2)
Cl10.0546 (6)0.0614 (6)0.0501 (5)0.0198 (5)0.0087 (4)0.0068 (5)
Cu10.0352 (3)0.0418 (3)0.0544 (3)0.0203 (2)0.0121 (2)0.0060 (2)
Cu20.0362 (3)0.0433 (3)0.0569 (3)0.0192 (2)0.0132 (2)0.0064 (2)
N10.0398 (17)0.0490 (18)0.0527 (18)0.0235 (14)0.0049 (14)0.0068 (15)
N20.0414 (17)0.0428 (17)0.0480 (17)0.0185 (14)0.0081 (13)0.0015 (15)
N30.0364 (16)0.0481 (18)0.0557 (18)0.0184 (14)0.0024 (14)0.0110 (16)
N40.0433 (18)0.0473 (18)0.0467 (17)0.0185 (14)0.0095 (14)0.0022 (15)
N50.063 (2)0.054 (2)0.061 (2)0.0309 (19)0.0025 (18)0.0004 (19)
O10.0440 (15)0.0427 (15)0.0704 (18)0.0214 (12)0.0156 (13)0.0087 (14)
O20.0460 (16)0.0582 (18)0.080 (2)0.0285 (14)0.0166 (14)0.0198 (16)
O30.0453 (15)0.0418 (14)0.0716 (18)0.0203 (12)0.0163 (13)0.0097 (14)
O40.0499 (17)0.0563 (17)0.080 (2)0.0284 (14)0.0187 (15)0.0174 (16)
O50.0411 (15)0.0654 (19)0.078 (2)0.0273 (14)0.0164 (14)0.0138 (16)
O60.0430 (15)0.0609 (18)0.089 (2)0.0323 (14)0.0151 (14)0.0168 (17)
O70.096 (3)0.067 (2)0.073 (2)0.0429 (19)0.0019 (18)0.0145 (17)
O80.142 (4)0.080 (3)0.156 (4)0.064 (3)0.007 (3)0.027 (3)
O90.225 (7)0.198 (6)0.123 (4)0.118 (6)0.055 (4)0.004 (4)
O100.114 (4)0.109 (4)0.155 (5)0.040 (3)0.007 (3)0.060 (3)
O110.174 (5)0.100 (3)0.095 (3)0.079 (3)0.039 (3)0.027 (3)
Geometric parameters (Å, º) top
C1—N11.342 (5)C20—C211.374 (6)
C1—C21.358 (6)C20—H200.9300
C1—H10.9300C21—C221.373 (6)
C2—C31.391 (7)C21—H210.9300
C2—H20.9300C22—C231.397 (5)
C3—C41.377 (6)C22—H220.9300
C3—H30.9300C23—N41.330 (5)
C4—C51.371 (5)C23—C241.476 (5)
C4—H40.9300C24—N31.355 (5)
C5—N11.358 (5)C24—C251.375 (6)
C5—C61.481 (5)C25—C261.385 (6)
C6—N21.338 (5)C25—H250.9300
C6—C71.388 (5)C26—C271.370 (7)
C7—C81.382 (6)C26—H260.9300
C7—H70.9300C27—C281.374 (6)
C8—C91.379 (6)C27—H270.9300
C8—H80.9300C28—N31.342 (5)
C9—C101.368 (6)C28—H280.9300
C9—H90.9300Cl1—Cu22.6222 (14)
C10—N21.355 (5)Cu1—O11.950 (3)
C10—H100.9300Cu1—O61.954 (3)
C11—O21.246 (4)Cu1—N11.983 (3)
C11—O11.260 (4)Cu1—N21.997 (3)
C11—C121.507 (5)Cu1—O72.251 (2)
C12—C131.393 (5)Cu2—O31.953 (3)
C12—C171.400 (5)Cu2—O51.967 (3)
C13—C141.379 (5)Cu2—N31.989 (3)
C13—H130.9300Cu2—N42.001 (3)
C14—C151.385 (5)N5—O91.167 (4)
C14—H140.9300N5—O81.194 (4)
C15—C161.392 (5)N5—O101.230 (5)
C15—C181.495 (5)O5—H5A0.8491
C16—C171.372 (5)O5—H5B0.8602
C16—H160.9300O6—H6A0.8570
C17—H170.9300O6—H6B0.8543
C18—O41.257 (4)O7—H7A0.8545
C18—O31.265 (4)O7—H7B0.8581
C19—N41.337 (5)O11—H11A0.8600
C19—C201.384 (6)O11—H11B0.8431
C19—H190.9300
N1—C1—C2122.5 (4)N4—C23—C22121.5 (4)
N1—C1—H1118.8N4—C23—C24114.7 (3)
C2—C1—H1118.8C22—C23—C24123.8 (4)
C1—C2—C3119.3 (4)N3—C24—C25121.7 (4)
C1—C2—H2120.3N3—C24—C23113.7 (3)
C3—C2—H2120.3C25—C24—C23124.5 (4)
C4—C3—C2118.7 (4)C24—C25—C26119.2 (4)
C4—C3—H3120.6C24—C25—H25120.4
C2—C3—H3120.6C26—C25—H25120.4
C5—C4—C3119.3 (4)C27—C26—C25118.8 (4)
C5—C4—H4120.4C27—C26—H26120.6
C3—C4—H4120.4C25—C26—H26120.6
N1—C5—C4121.8 (4)C26—C27—C28119.7 (4)
N1—C5—C6113.7 (3)C26—C27—H27120.2
C4—C5—C6124.5 (4)C28—C27—H27120.2
N2—C6—C7122.0 (4)N3—C28—C27122.0 (4)
N2—C6—C5114.8 (3)N3—C28—H28119.0
C7—C6—C5123.2 (4)C27—C28—H28119.0
C8—C7—C6118.6 (4)O1—Cu1—O692.65 (12)
C8—C7—H7120.7O1—Cu1—N191.80 (12)
C6—C7—H7120.7O6—Cu1—N1170.29 (13)
C9—C8—C7119.1 (4)O1—Cu1—N2167.42 (13)
C9—C8—H8120.5O6—Cu1—N292.88 (12)
C7—C8—H8120.5N1—Cu1—N281.12 (13)
C10—C9—C8119.8 (4)O1—Cu1—O792.92 (11)
C10—C9—H9120.1O6—Cu1—O795.55 (12)
C8—C9—H9120.1N1—Cu1—O792.84 (11)
N2—C10—C9121.5 (4)N2—Cu1—O797.78 (11)
N2—C10—H10119.3O3—Cu2—O592.61 (12)
C9—C10—H10119.3O3—Cu2—N392.51 (12)
O2—C11—O1125.6 (3)O5—Cu2—N3162.04 (14)
O2—C11—C12117.6 (3)O3—Cu2—N4167.36 (14)
O1—C11—C12116.8 (3)O5—Cu2—N491.12 (12)
C13—C12—C17118.9 (3)N3—Cu2—N480.46 (13)
C13—C12—C11121.3 (3)O3—Cu2—Cl194.28 (10)
C17—C12—C11119.8 (3)O5—Cu2—Cl198.55 (11)
C14—C13—C12120.4 (3)N3—Cu2—Cl198.21 (10)
C14—C13—H13119.8N4—Cu2—Cl197.10 (11)
C12—C13—H13119.8C1—N1—C5118.4 (3)
C13—C14—C15120.6 (3)C1—N1—Cu1126.3 (3)
C13—C14—H14119.7C5—N1—Cu1115.3 (3)
C15—C14—H14119.7C6—N2—C10119.0 (3)
C14—C15—C16119.1 (3)C6—N2—Cu1115.0 (2)
C14—C15—C18119.7 (3)C10—N2—Cu1126.0 (3)
C16—C15—C18121.2 (3)C28—N3—C24118.5 (4)
C17—C16—C15120.7 (3)C28—N3—Cu2126.0 (3)
C17—C16—H16119.6C24—N3—Cu2115.6 (3)
C15—C16—H16119.6C23—N4—C19119.5 (3)
C16—C17—C12120.3 (3)C23—N4—Cu2115.6 (3)
C16—C17—H17119.9C19—N4—Cu2124.9 (3)
C12—C17—H17119.9O9—N5—O8121.9 (4)
O4—C18—O3125.0 (3)O9—N5—O10120.2 (3)
O4—C18—C15117.4 (3)O8—N5—O10117.8 (3)
O3—C18—C15117.6 (3)C11—O1—Cu1128.7 (2)
N4—C19—C20121.6 (4)C18—O3—Cu2128.4 (2)
N4—C19—H19119.2Cu2—O5—H5A133.7
C20—C19—H19119.2Cu2—O5—H5B90.8
C21—C20—C19119.3 (4)H5A—O5—H5B106.8
C21—C20—H20120.4Cu1—O6—H6A115.0
C19—C20—H20120.4Cu1—O6—H6B130.8
C22—C21—C20119.1 (4)H6A—O6—H6B106.7
C22—C21—H21120.5Cu1—O7—H7A134.4
C20—C21—H21120.5Cu1—O7—H7B118.9
C21—C22—C23119.0 (4)H7A—O7—H7B106.5
C21—C22—H22120.5H11A—O11—H11B107.4
C23—C22—H22120.5
N1—C1—C2—C30.6 (8)N2—Cu1—N1—C51.9 (3)
C1—C2—C3—C40.1 (8)O7—Cu1—N1—C599.3 (3)
C2—C3—C4—C51.4 (7)C7—C6—N2—C100.1 (6)
C3—C4—C5—N12.2 (6)C5—C6—N2—C10178.2 (4)
C3—C4—C5—C6175.6 (4)C7—C6—N2—Cu1179.3 (3)
N1—C5—C6—N21.0 (5)C5—C6—N2—Cu12.5 (4)
C4—C5—C6—N2177.0 (4)C9—C10—N2—C61.0 (7)
N1—C5—C6—C7179.1 (4)C9—C10—N2—Cu1178.2 (4)
C4—C5—C6—C71.1 (6)O1—Cu1—N2—C653.9 (7)
N2—C6—C7—C81.5 (6)O6—Cu1—N2—C6169.9 (3)
C5—C6—C7—C8179.5 (4)N1—Cu1—N2—C62.4 (3)
C6—C7—C8—C91.9 (7)O7—Cu1—N2—C694.1 (3)
C7—C8—C9—C100.9 (7)O1—Cu1—N2—C10125.3 (5)
C8—C9—C10—N20.6 (7)O6—Cu1—N2—C109.3 (4)
O2—C11—C12—C13178.0 (4)N1—Cu1—N2—C10178.4 (4)
O1—C11—C12—C133.5 (6)O7—Cu1—N2—C1086.7 (4)
O2—C11—C12—C173.9 (6)C27—C28—N3—C241.3 (7)
O1—C11—C12—C17174.6 (4)C27—C28—N3—Cu2179.7 (4)
C17—C12—C13—C141.0 (6)C25—C24—N3—C280.4 (6)
C11—C12—C13—C14179.1 (4)C23—C24—N3—C28177.9 (4)
C12—C13—C14—C151.3 (6)C25—C24—N3—Cu2179.4 (3)
C13—C14—C15—C160.8 (6)C23—C24—N3—Cu21.1 (4)
C13—C14—C15—C18179.3 (4)O3—Cu2—N3—C2812.5 (4)
C14—C15—C16—C170.1 (6)O5—Cu2—N3—C28119.0 (5)
C18—C15—C16—C17178.5 (4)N4—Cu2—N3—C28178.1 (4)
C15—C16—C17—C120.2 (6)Cl1—Cu2—N3—C2882.2 (4)
C13—C12—C17—C160.3 (6)O3—Cu2—N3—C24168.5 (3)
C11—C12—C17—C16178.4 (4)O5—Cu2—N3—C2462.1 (5)
C14—C15—C18—O42.8 (6)N4—Cu2—N3—C240.9 (3)
C16—C15—C18—O4178.7 (4)Cl1—Cu2—N3—C2496.8 (3)
C14—C15—C18—O3175.1 (4)C22—C23—N4—C191.0 (6)
C16—C15—C18—O33.3 (6)C24—C23—N4—C19179.9 (4)
N4—C19—C20—C211.5 (8)C22—C23—N4—Cu2179.1 (3)
C19—C20—C21—C222.2 (7)C24—C23—N4—Cu20.1 (4)
C20—C21—C22—C231.4 (7)C20—C19—N4—C230.1 (7)
C21—C22—C23—N40.2 (6)C20—C19—N4—Cu2180.0 (4)
C21—C22—C23—C24179.3 (4)O3—Cu2—N4—C2356.4 (7)
N4—C23—C24—N30.7 (5)O5—Cu2—N4—C23163.5 (3)
C22—C23—C24—N3179.9 (4)N3—Cu2—N4—C230.5 (3)
N4—C23—C24—C25178.9 (4)Cl1—Cu2—N4—C2397.7 (3)
C22—C23—C24—C251.9 (6)O3—Cu2—N4—C19123.7 (6)
N3—C24—C25—C260.8 (6)O5—Cu2—N4—C1916.5 (4)
C23—C24—C25—C26178.9 (4)N3—Cu2—N4—C19179.4 (4)
C24—C25—C26—C271.0 (7)Cl1—Cu2—N4—C1982.2 (4)
C25—C26—C27—C280.1 (8)O2—C11—O1—Cu15.6 (7)
C26—C27—C28—N31.1 (8)C12—C11—O1—Cu1172.8 (2)
C2—C1—N1—C50.1 (7)O6—Cu1—O1—C117.5 (4)
C2—C1—N1—Cu1177.4 (4)N1—Cu1—O1—C11178.9 (4)
C4—C5—N1—C11.5 (6)N2—Cu1—O1—C11123.5 (5)
C6—C5—N1—C1176.5 (4)O7—Cu1—O1—C1188.2 (4)
C4—C5—N1—Cu1179.1 (3)O4—C18—O3—Cu25.3 (6)
C6—C5—N1—Cu11.0 (4)C15—C18—O3—Cu2172.4 (3)
O1—Cu1—N1—C115.0 (4)O5—Cu2—O3—C1816.7 (4)
N2—Cu1—N1—C1175.5 (4)N3—Cu2—O3—C18179.5 (4)
O7—Cu1—N1—C178.1 (4)N4—Cu2—O3—C18123.7 (6)
O1—Cu1—N1—C5167.7 (3)Cl1—Cu2—O3—C1882.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.852.002.534 (4)120
O6—H6A···O20.861.912.511 (4)126
O6—H6B···O8i0.862.343.079 (4)145
O6—H6B···O10i0.862.142.923 (4)151
O7—H7A···Cl1ii0.852.533.325 (2)156
O7—H7B···O10iii0.862.062.869 (3)157
O11—H11A···O80.862.263.119 (3)176
O11—H11A···O90.862.423.038 (3)129
O11—H11B···Cl1iv0.842.393.227 (2)173
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y1, z; (iii) x+1, y, z+1; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H4O4)Cl(C10H8N2)2(H2O)3]NO3·H2O
Mr773.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.155 (2), 11.204 (2), 15.454 (3)
α, β, γ (°)76.34 (3), 83.61 (3), 64.90 (3)
V3)1547.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(Allen et al., 1991)
Tmin, Tmax0.750, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
15250, 6973, 4651
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.172, 1.04
No. of reflections6973
No. of parameters412
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.64

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.852.002.534 (4)120
O6—H6A···O20.861.912.511 (4)126
O6—H6B···O8i0.862.343.079 (4)145
O6—H6B···O10i0.862.142.923 (4)151
O7—H7A···Cl1ii0.852.533.325 (2)156
O7—H7B···O10iii0.862.062.869 (3)157
O11—H11A···O80.862.263.119 (3)176
O11—H11A···O90.862.423.038 (3)129
O11—H11B···Cl1iv0.842.393.227 (2)173
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y1, z; (iii) x+1, y, z+1; (iv) x, y+2, z+1.
 

Acknowledgements

This work was supported by the Open Research Fund of the Key Laboratory in Hunan Province (grant No. 10 K01) and the Doctoral Fund of Hengyang Normal University (grant No. 10B65).

References

First citationLo, S. M.-F., Chui, S. S.-Y., Shek, L.-Y., Lin, Z.-Y., Zhang, X.-X., Wen, G.-H. & Williams, I. D. (2000). J. Am. Chem. Soc. 122, 6293–6294.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-F., Zhang, Y.-B., Xue, W., Qi, X.-L. & Chen, X.-M. (2010). CrystEngComm, 12, 3834–3839.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, X.-X., Sang, X.-G., Liu, X.-X., Zhang, X. & Sun, T. (2010). Transition Met. Chem. 35, 501–506.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Bu, J.-T., Chen, S.-M., Wu, T., Zheng, S.-T., Chen, Y.-G., Nieto, R. A., Feng, P.-Y. & Bu, X.-H. (2010). Angew. Chem. Int. Ed. Engl. 49, 8876–8879.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m746-m747
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds