organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1722-o1723

9-(2-Bromo­phen­­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 19 April 2012; accepted 8 May 2012; online 16 May 2012)

In the crystal structure of the title compound, C21H15BrNO2+·CF3SO3, adjacent cations are linked through C—Br⋯π and ππ contacts [centroid–centroid distance = 3.744 (2) Å], and neighbouring cations and anions via C—H⋯O, C—F⋯π and S—O⋯π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 18.7 (1)°. The carb­oxy group is twisted at an angle of 69.3 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine moieties are either parallel or inclined at an angle of 27.8 (1)° in the lattice.

Related literature

For general background to the chemiluminescent properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulfonates, see: King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Krzymiński et al. (2011[Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072-1085.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313-o1314.]). For inter­molecular inter­actions, see: Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Seo et al. (2009[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302.]); Sikorski et al. (2005[Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690-o694.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313-o1314.]). For similar C–Br⋯π, ππ, C–H⋯O, C–F⋯π and S–O⋯π inter­actions in related compounds, see: Sikorski et al. (2005[Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690-o694.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313-o1314.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313-o1314.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15BrNO2+·CF3O3S

  • Mr = 542.32

  • Monoclinic, P 21 /c

  • a = 12.5718 (8) Å

  • b = 20.3617 (16) Å

  • c = 8.5162 (6) Å

  • β = 104.498 (7)°

  • V = 2110.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 295 K

  • 0.46 × 0.25 × 0.02 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.668, Tmax = 1.000

  • 16372 measured reflections

  • 3735 independent reflections

  • 2348 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 0.92

  • 3735 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O28i 0.93 2.54 3.289 (5) 137
C7—H7⋯O27 0.93 2.54 3.200 (5) 128
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
C—F⋯π, C—Br⋯π and S—O⋯π inter­actions (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively.

XIJ IJ XJ XIJ
C19—Br24⋯Cg4ii 3.523 (2) 4.847 (3) 124.6 (1)
C30—F32⋯Cg4iii 3.648 (2) 4.310 (4) 110.8 (2)
S26—O27⋯Cg1iv 3.821 (3) 3.708 (2) 74.8 (2)
S26—O28⋯Cg1iv 3.414 (3) 3.708 (2) 90.3 (2)
S26—O28⋯Cg2iv 3.358 (3) 4.445 (2) 132.2 (2)
Symmetry codes: (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The well-known chemiluminescence of 9-(phenoxycarbonyl)-10-methylacridinium salts has been utilized in chemiluminescent indicators and labels, which are commonly applied in assays of biologically and environmentally important entities (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Krzymiński et al., 2011). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In continuing our investigations on the latter aspect, we synthesized 9-(2-bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose crystal structure is presented here.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0519 (3) Å and 0.0034 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 18.7 (1)°. The carboxyl group is twisted at an angle of 69.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 27.8 (1)° in the crystal.

The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the adjacent cations are linked by C–Br···π (Table 2, Fig. 2) and π-π (Table 3, Fig.2) contacts, and the cations and neighboring anions via C–H···O (Table 1, Figs. 1 and 2), C–F···π (Table 2, Fig. 2) and S–O···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006). The C–F···π (Dorn et al., 2005), S–O···π (Dorn et al., 2005) and ππ (Hunter et al., 2001) interactions should be of an attractive nature. The C–Br···π interactions have been reported by others (Seo et al., 2009). We have found all the above interactions in many other 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates (e.g. Sikorski et al., 2005; Trzybiński et al., 2010). Mentioning them here is important in the context of the analysis and understanding of the crystal architecture of this group of compounds. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to the chemiluminescent properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Trzybiński et al. (2010). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Seo et al. (2009); Sikorski et al. (2005); Trzybiński et al. (2010). For similar C–Br···π , ππ, C–H···O, C–F···π and S–O···π interactions in related compounds, see: Sikorski et al. (2005); Trzybiński et al. (2010). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).

Experimental top

2-Bromophenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2-bromophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane (Trzybiński et al., 2010). The crude 9-(2-bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Light-orange crystals suitable for X-ray investigations were grown from methanol/water (2:1, v/v) solution (m.p. 495–497 K).

Refinement top

H atoms were positioned geometrically, with C–H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bond is represented by a dashed line.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–F···π, C–Br···π, S–O···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, y + 1/2, –z + 3/2; (ii) x, –y + 3/2, z – 1/2; (iii) –x, –y + 1, –z + 1; (iv) –x + 1, –y + 1, –z + 2; (v) –x + 1, –y + 1, –z + 1.]
9-(2-Bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C21H15BrNO2+·CF3O3SF(000) = 1088
Mr = 542.32Dx = 1.707 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1539 reflections
a = 12.5718 (8) Åθ = 3.0–29.2°
b = 20.3617 (16) ŵ = 2.11 mm1
c = 8.5162 (6) ÅT = 295 K
β = 104.498 (7)°Plate, light-orange
V = 2110.6 (3) Å30.46 × 0.25 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3735 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.2°
ω scansh = 1411
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2423
Tmin = 0.668, Tmax = 1.000l = 1010
16372 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
3735 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C21H15BrNO2+·CF3O3SV = 2110.6 (3) Å3
Mr = 542.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5718 (8) ŵ = 2.11 mm1
b = 20.3617 (16) ÅT = 295 K
c = 8.5162 (6) Å0.46 × 0.25 × 0.02 mm
β = 104.498 (7)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3735 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2348 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 1.000Rint = 0.041
16372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.92Δρmax = 0.46 e Å3
3735 reflectionsΔρmin = 0.40 e Å3
299 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5650 (3)0.70124 (15)0.5969 (4)0.0507 (8)
H10.50480.72090.62270.061*
C20.6310 (3)0.73723 (16)0.5286 (4)0.0575 (9)
H20.61700.78180.50980.069*
C30.7204 (3)0.70832 (18)0.4856 (4)0.0581 (9)
H30.76390.73370.43550.070*
C40.7451 (3)0.64367 (16)0.5157 (3)0.0517 (8)
H40.80480.62520.48600.062*
C50.6664 (3)0.43392 (15)0.7299 (4)0.0532 (8)
H50.73140.41660.71400.064*
C60.5970 (3)0.39546 (15)0.7872 (4)0.0586 (9)
H60.61540.35160.80990.070*
C70.4988 (3)0.41906 (15)0.8135 (4)0.0525 (8)
H70.45190.39100.85030.063*
C80.4724 (2)0.48279 (14)0.7851 (3)0.0457 (7)
H80.40780.49880.80520.055*
C90.5181 (2)0.59299 (13)0.6949 (3)0.0355 (7)
N100.70556 (19)0.54005 (11)0.6297 (2)0.0397 (6)
C110.5865 (2)0.63282 (13)0.6305 (3)0.0379 (7)
C120.6800 (2)0.60492 (14)0.5919 (3)0.0405 (7)
C130.5419 (2)0.52598 (13)0.7246 (3)0.0366 (7)
C140.6396 (2)0.50086 (13)0.6942 (3)0.0380 (7)
C150.4213 (2)0.62290 (13)0.7426 (3)0.0388 (7)
O160.32648 (15)0.60104 (8)0.6463 (2)0.0410 (5)
O170.42777 (16)0.66151 (10)0.8497 (2)0.0541 (6)
C180.2280 (2)0.62507 (14)0.6773 (3)0.0417 (7)
C190.1815 (2)0.68158 (14)0.6025 (3)0.0457 (8)
C200.0812 (3)0.70147 (17)0.6251 (4)0.0596 (9)
H200.04760.73920.57430.072*
C210.0311 (3)0.6654 (2)0.7228 (4)0.0664 (10)
H210.03620.67910.73820.080*
C220.0792 (3)0.60940 (19)0.7976 (4)0.0637 (10)
H220.04490.58550.86390.076*
C230.1787 (3)0.58855 (15)0.7748 (4)0.0509 (8)
H230.21170.55050.82450.061*
Br240.25462 (3)0.731793 (18)0.47628 (4)0.06770 (16)
C250.8105 (3)0.51466 (16)0.6062 (4)0.0605 (9)
H25A0.82610.47280.65870.091*
H25B0.86850.54490.65220.091*
H25C0.80500.50980.49230.091*
S260.17372 (8)0.40673 (5)0.95720 (10)0.0608 (3)
O270.2606 (2)0.41546 (17)0.8843 (4)0.1142 (11)
O280.1816 (3)0.35388 (13)1.0698 (3)0.0968 (9)
O290.1332 (2)0.46570 (12)1.0126 (3)0.0852 (8)
C300.0621 (3)0.38096 (18)0.7915 (4)0.0625 (9)
F310.0855 (2)0.32387 (11)0.7309 (3)0.0976 (7)
F320.0450 (2)0.42450 (12)0.6698 (2)0.0985 (7)
F330.03080 (19)0.37394 (13)0.8308 (3)0.1006 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (2)0.0501 (19)0.0606 (18)0.0065 (16)0.0176 (16)0.0073 (15)
C20.056 (2)0.0465 (18)0.072 (2)0.0008 (17)0.0180 (19)0.0134 (16)
C30.053 (2)0.063 (2)0.061 (2)0.0112 (18)0.0200 (17)0.0060 (16)
C40.045 (2)0.060 (2)0.0563 (18)0.0036 (17)0.0233 (16)0.0003 (15)
C50.053 (2)0.0488 (19)0.0603 (19)0.0127 (17)0.0193 (16)0.0009 (15)
C60.068 (3)0.0403 (18)0.068 (2)0.0100 (18)0.0181 (19)0.0076 (15)
C70.051 (2)0.050 (2)0.0576 (19)0.0015 (17)0.0163 (16)0.0083 (15)
C80.0402 (19)0.0512 (19)0.0463 (16)0.0000 (15)0.0122 (14)0.0017 (14)
C90.0288 (16)0.0437 (17)0.0319 (13)0.0022 (13)0.0035 (12)0.0038 (12)
N100.0327 (14)0.0451 (14)0.0426 (13)0.0004 (12)0.0120 (11)0.0088 (11)
C110.0318 (17)0.0444 (17)0.0365 (14)0.0006 (14)0.0065 (13)0.0004 (12)
C120.0351 (18)0.0513 (19)0.0350 (14)0.0040 (15)0.0086 (13)0.0073 (13)
C130.0297 (17)0.0463 (18)0.0328 (14)0.0000 (13)0.0058 (12)0.0044 (12)
C140.0345 (18)0.0438 (18)0.0342 (14)0.0004 (14)0.0056 (13)0.0061 (12)
C150.0392 (19)0.0388 (16)0.0392 (16)0.0002 (14)0.0112 (14)0.0036 (13)
O160.0297 (11)0.0477 (11)0.0461 (11)0.0011 (9)0.0102 (9)0.0073 (9)
O170.0409 (13)0.0674 (14)0.0534 (12)0.0011 (11)0.0105 (10)0.0193 (11)
C180.0297 (17)0.0493 (18)0.0453 (15)0.0000 (15)0.0079 (13)0.0118 (14)
C190.0331 (19)0.0549 (19)0.0455 (16)0.0011 (15)0.0031 (14)0.0113 (14)
C200.045 (2)0.065 (2)0.062 (2)0.0092 (19)0.0010 (17)0.0164 (18)
C210.032 (2)0.091 (3)0.076 (2)0.001 (2)0.0114 (19)0.033 (2)
C220.048 (2)0.085 (3)0.062 (2)0.016 (2)0.0208 (18)0.0191 (19)
C230.042 (2)0.0555 (19)0.0585 (19)0.0048 (16)0.0189 (16)0.0061 (15)
Br240.0705 (3)0.0676 (3)0.0633 (2)0.01066 (19)0.01349 (18)0.01921 (17)
C250.045 (2)0.058 (2)0.086 (2)0.0032 (17)0.0298 (18)0.0099 (18)
S260.0498 (6)0.0710 (6)0.0608 (5)0.0004 (4)0.0121 (4)0.0092 (4)
O270.0577 (19)0.157 (3)0.143 (3)0.0291 (19)0.0528 (18)0.044 (2)
O280.130 (3)0.0818 (18)0.0673 (15)0.0238 (17)0.0033 (16)0.0126 (14)
O290.108 (2)0.0632 (16)0.0888 (17)0.0013 (15)0.0326 (16)0.0232 (13)
C300.060 (3)0.074 (3)0.061 (2)0.008 (2)0.0304 (19)0.0021 (19)
F310.123 (2)0.0832 (16)0.0873 (14)0.0155 (14)0.0280 (14)0.0331 (12)
F320.1056 (19)0.1177 (19)0.0672 (13)0.0148 (15)0.0119 (13)0.0236 (13)
F330.0587 (15)0.140 (2)0.1082 (17)0.0275 (14)0.0301 (13)0.0134 (15)
Geometric parameters (Å, º) top
C1—C21.343 (4)C13—C141.412 (4)
C1—C111.434 (4)C15—O171.192 (3)
C1—H10.9300C15—O161.342 (3)
C2—C31.397 (5)O16—C181.417 (3)
C2—H20.9300C18—C231.372 (4)
C3—C41.362 (5)C18—C191.373 (4)
C3—H30.9300C19—C201.383 (4)
C4—C121.407 (4)C19—Br241.882 (3)
C4—H40.9300C20—C211.375 (5)
C5—C61.351 (4)C20—H200.9300
C5—C141.419 (4)C21—C221.371 (5)
C5—H50.9300C21—H210.9300
C6—C71.394 (4)C22—C231.380 (5)
C6—H60.9300C22—H220.9300
C7—C81.346 (4)C23—H230.9300
C7—H70.9300C25—H25A0.9600
C8—C131.424 (4)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C111.391 (4)S26—O271.397 (3)
C9—C131.406 (4)S26—O281.428 (3)
C9—C151.505 (4)S26—O291.430 (2)
N10—C141.362 (3)S26—C301.801 (4)
N10—C121.378 (3)C30—F331.301 (4)
N10—C251.476 (4)C30—F311.334 (4)
C11—C121.416 (4)C30—F321.340 (4)
C2—C1—C11120.7 (3)C13—C14—C5118.7 (3)
C2—C1—H1119.7O17—C15—O16124.5 (3)
C11—C1—H1119.7O17—C15—C9124.6 (3)
C1—C2—C3120.5 (3)O16—C15—C9110.8 (2)
C1—C2—H2119.7C15—O16—C18117.1 (2)
C3—C2—H2119.7C23—C18—C19122.0 (3)
C4—C3—C2121.2 (3)C23—C18—O16118.3 (3)
C4—C3—H3119.4C19—C18—O16119.6 (3)
C2—C3—H3119.4C18—C19—C20118.6 (3)
C3—C4—C12119.8 (3)C18—C19—Br24120.5 (2)
C3—C4—H4120.1C20—C19—Br24120.9 (3)
C12—C4—H4120.1C21—C20—C19120.0 (3)
C6—C5—C14119.6 (3)C21—C20—H20120.0
C6—C5—H5120.2C19—C20—H20120.0
C14—C5—H5120.2C22—C21—C20120.7 (3)
C5—C6—C7122.4 (3)C22—C21—H21119.7
C5—C6—H6118.8C20—C21—H21119.7
C7—C6—H6118.8C21—C22—C23120.0 (3)
C8—C7—C6119.5 (3)C21—C22—H22120.0
C8—C7—H7120.3C23—C22—H22120.0
C6—C7—H7120.3C18—C23—C22118.8 (3)
C7—C8—C13120.9 (3)C18—C23—H23120.6
C7—C8—H8119.5C22—C23—H23120.6
C13—C8—H8119.5N10—C25—H25A109.5
C11—C9—C13120.8 (3)N10—C25—H25B109.5
C11—C9—C15119.5 (2)H25A—C25—H25B109.5
C13—C9—C15119.6 (3)N10—C25—H25C109.5
C14—N10—C12121.7 (2)H25A—C25—H25C109.5
C14—N10—C25120.3 (2)H25B—C25—H25C109.5
C12—N10—C25117.9 (2)O27—S26—O28117.6 (2)
C9—C11—C12119.2 (3)O27—S26—O29115.00 (18)
C9—C11—C1122.7 (3)O28—S26—O29112.46 (17)
C12—C11—C1118.0 (3)O27—S26—C30103.37 (18)
N10—C12—C4121.1 (3)O28—S26—C30102.49 (17)
N10—C12—C11119.3 (3)O29—S26—C30103.38 (17)
C4—C12—C11119.6 (3)F33—C30—F31107.6 (3)
C9—C13—C14118.3 (3)F33—C30—F32106.9 (3)
C9—C13—C8122.8 (3)F31—C30—F32106.6 (3)
C14—C13—C8118.9 (3)F33—C30—S26113.8 (2)
N10—C14—C13120.5 (2)F31—C30—S26110.6 (3)
N10—C14—C5120.9 (3)F32—C30—S26110.8 (2)
C11—C1—C2—C31.5 (5)C8—C13—C14—N10177.1 (2)
C1—C2—C3—C41.9 (5)C9—C13—C14—C5177.5 (2)
C2—C3—C4—C120.2 (4)C8—C13—C14—C52.0 (4)
C14—C5—C6—C70.1 (5)C6—C5—C14—N10177.1 (3)
C5—C6—C7—C81.7 (5)C6—C5—C14—C132.0 (4)
C6—C7—C8—C131.6 (4)C11—C9—C15—O1765.8 (3)
C13—C9—C11—C121.2 (4)C13—C9—C15—O17110.5 (3)
C15—C9—C11—C12177.5 (2)C11—C9—C15—O16113.1 (3)
C13—C9—C11—C1179.5 (2)C13—C9—C15—O1670.5 (3)
C15—C9—C11—C14.3 (4)O17—C15—O16—C181.1 (4)
C2—C1—C11—C9177.3 (3)C9—C15—O16—C18179.9 (2)
C2—C1—C11—C121.0 (4)C15—O16—C18—C2394.4 (3)
C14—N10—C12—C4175.8 (2)C15—O16—C18—C1989.3 (3)
C25—N10—C12—C47.3 (4)C23—C18—C19—C200.9 (4)
C14—N10—C12—C114.1 (3)O16—C18—C19—C20175.3 (2)
C25—N10—C12—C11172.7 (2)C23—C18—C19—Br24177.7 (2)
C3—C4—C12—N10177.4 (3)O16—C18—C19—Br246.2 (3)
C3—C4—C12—C112.7 (4)C18—C19—C20—C211.0 (4)
C9—C11—C12—N104.6 (3)Br24—C19—C20—C21177.5 (2)
C1—C11—C12—N10177.0 (2)C19—C20—C21—C220.4 (5)
C9—C11—C12—C4175.3 (2)C20—C21—C22—C230.3 (5)
C1—C11—C12—C43.0 (4)C19—C18—C23—C220.2 (4)
C11—C9—C13—C142.7 (3)O16—C18—C23—C22176.0 (2)
C15—C9—C13—C14173.5 (2)C21—C22—C23—C180.4 (4)
C11—C9—C13—C8177.8 (2)O27—S26—C30—F33175.8 (3)
C15—C9—C13—C86.0 (4)O28—S26—C30—F3361.5 (3)
C7—C8—C13—C9179.3 (2)O29—S26—C30—F3355.6 (3)
C7—C8—C13—C140.2 (4)O27—S26—C30—F3162.8 (3)
C12—N10—C14—C130.0 (3)O28—S26—C30—F3159.9 (3)
C25—N10—C14—C13176.7 (2)O29—S26—C30—F31177.0 (2)
C12—N10—C14—C5179.0 (2)O27—S26—C30—F3255.2 (3)
C25—N10—C14—C54.2 (4)O28—S26—C30—F32177.9 (3)
C9—C13—C14—N103.4 (3)O29—S26—C30—F3265.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O28i0.932.543.289 (5)137
C7—H7···O270.932.543.200 (5)128
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H15BrNO2+·CF3O3S
Mr542.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.5718 (8), 20.3617 (16), 8.5162 (6)
β (°) 104.498 (7)
V3)2110.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.46 × 0.25 × 0.02
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.668, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16372, 3735, 2348
Rint0.041
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 0.92
No. of reflections3735
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O28i0.932.543.289 (5)137
C7—H7···O270.932.543.200 (5)128
Symmetry code: (i) x+1, y+1/2, z+3/2.
C—F···π, C—Br···π and S—O···π interactions (Å, °). top
Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively.
XI···JI···JX···JXI···J
C19—Br24···Cg4ii3.523 (2)4.847 (3)124.6 (1)
C30—F32···Cg4iii3.648 (2)4.310 (4)110.8 (2)
S26—O27···Cg1iv3.821 (3)3.708 (2)74.8 (2)
S26—O28···Cg1iv3.414 (3)3.708 (2)90.3 (2)
S26—O28···Cg2iv3.358 (3)4.445 (2)132.2 (2)
Symmetry codes: (ii) x, –y + 3/2, z – 1/2; (iii) –x, –y + 1, –z + 1; (iv) –x + 1, –y + 1, –z + 2.
ππ interactions (Å, °). top
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
13v3.744 (2)2.74 (13)3.703 (2)0.553 (2)
31v3.744 (2)2.74 (13)3.717 (2)0.549 (2)
Symmetry code: (v) –x + 1, –y + 1, –z + 1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40). DT acknowledges financial support from the European Social Fund within the project "Educators for the elite - integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdańsk" and the Human Capital Operational Program Action 4.1.1, Improving the quality on offer at tertiary educational institutions. This publication reflects the views only of the author: the sponsor cannot be held responsible for any use which may be made of the information contained therein.

References

First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085.  Web of Science PubMed Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1722-o1723
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds