organic compounds
9-(2-Bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 21H15BrNO2+·CF3SO3−, adjacent cations are linked through C—Br⋯π and π–π contacts [centroid–centroid distance = 3.744 (2) Å], and neighbouring cations and anions via C—H⋯O, C—F⋯π and S—O⋯π interactions. The acridine and benzene ring systems are oriented at a dihedral angle of 18.7 (1)°. The carboxy group is twisted at an angle of 69.3 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine moieties are either parallel or inclined at an angle of 27.8 (1)° in the lattice.
of the title compound, CRelated literature
For general background to the chemiluminescent properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Trzybiński et al. (2010). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Seo et al. (2009); Sikorski et al. (2005); Trzybiński et al. (2010). For similar C–Br⋯π, π–π, C–H⋯O, C–F⋯π and S–O⋯π interactions in related compounds, see: Sikorski et al. (2005); Trzybiński et al. (2010). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812020892/fj2548sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020892/fj2548Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812020892/fj2548Isup3.cml
2-Bromophenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2-bromophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane (Trzybiński et al., 2010). The crude 9-(2-bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Light-orange crystals suitable for X-ray investigations were grown from methanol/water (2:1, v/v) solution (m.p. 495–497 K).
H atoms were positioned geometrically, with C–H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bond is represented by a dashed line. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–F···π, C–Br···π, S–O···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, y + 1/2, –z + 3/2; (ii) x, –y + 3/2, z – 1/2; (iii) –x, –y + 1, –z + 1; (iv) –x + 1, –y + 1, –z + 2; (v) –x + 1, –y + 1, –z + 1.] |
C21H15BrNO2+·CF3O3S− | F(000) = 1088 |
Mr = 542.32 | Dx = 1.707 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1539 reflections |
a = 12.5718 (8) Å | θ = 3.0–29.2° |
b = 20.3617 (16) Å | µ = 2.11 mm−1 |
c = 8.5162 (6) Å | T = 295 K |
β = 104.498 (7)° | Plate, light-orange |
V = 2110.6 (3) Å3 | 0.46 × 0.25 × 0.02 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3735 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 2348 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.2° |
ω scans | h = −14→11 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −24→23 |
Tmin = 0.668, Tmax = 1.000 | l = −10→10 |
16372 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3 |
3735 reflections | (Δ/σ)max = 0.001 |
299 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
C21H15BrNO2+·CF3O3S− | V = 2110.6 (3) Å3 |
Mr = 542.32 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.5718 (8) Å | µ = 2.11 mm−1 |
b = 20.3617 (16) Å | T = 295 K |
c = 8.5162 (6) Å | 0.46 × 0.25 × 0.02 mm |
β = 104.498 (7)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3735 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2348 reflections with I > 2σ(I) |
Tmin = 0.668, Tmax = 1.000 | Rint = 0.041 |
16372 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.46 e Å−3 |
3735 reflections | Δρmin = −0.40 e Å−3 |
299 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5650 (3) | 0.70124 (15) | 0.5969 (4) | 0.0507 (8) | |
H1 | 0.5048 | 0.7209 | 0.6227 | 0.061* | |
C2 | 0.6310 (3) | 0.73723 (16) | 0.5286 (4) | 0.0575 (9) | |
H2 | 0.6170 | 0.7818 | 0.5098 | 0.069* | |
C3 | 0.7204 (3) | 0.70832 (18) | 0.4856 (4) | 0.0581 (9) | |
H3 | 0.7639 | 0.7337 | 0.4355 | 0.070* | |
C4 | 0.7451 (3) | 0.64367 (16) | 0.5157 (3) | 0.0517 (8) | |
H4 | 0.8048 | 0.6252 | 0.4860 | 0.062* | |
C5 | 0.6664 (3) | 0.43392 (15) | 0.7299 (4) | 0.0532 (8) | |
H5 | 0.7314 | 0.4166 | 0.7140 | 0.064* | |
C6 | 0.5970 (3) | 0.39546 (15) | 0.7872 (4) | 0.0586 (9) | |
H6 | 0.6154 | 0.3516 | 0.8099 | 0.070* | |
C7 | 0.4988 (3) | 0.41906 (15) | 0.8135 (4) | 0.0525 (8) | |
H7 | 0.4519 | 0.3910 | 0.8503 | 0.063* | |
C8 | 0.4724 (2) | 0.48279 (14) | 0.7851 (3) | 0.0457 (7) | |
H8 | 0.4078 | 0.4988 | 0.8052 | 0.055* | |
C9 | 0.5181 (2) | 0.59299 (13) | 0.6949 (3) | 0.0355 (7) | |
N10 | 0.70556 (19) | 0.54005 (11) | 0.6297 (2) | 0.0397 (6) | |
C11 | 0.5865 (2) | 0.63282 (13) | 0.6305 (3) | 0.0379 (7) | |
C12 | 0.6800 (2) | 0.60492 (14) | 0.5919 (3) | 0.0405 (7) | |
C13 | 0.5419 (2) | 0.52598 (13) | 0.7246 (3) | 0.0366 (7) | |
C14 | 0.6396 (2) | 0.50086 (13) | 0.6942 (3) | 0.0380 (7) | |
C15 | 0.4213 (2) | 0.62290 (13) | 0.7426 (3) | 0.0388 (7) | |
O16 | 0.32648 (15) | 0.60104 (8) | 0.6463 (2) | 0.0410 (5) | |
O17 | 0.42777 (16) | 0.66151 (10) | 0.8497 (2) | 0.0541 (6) | |
C18 | 0.2280 (2) | 0.62507 (14) | 0.6773 (3) | 0.0417 (7) | |
C19 | 0.1815 (2) | 0.68158 (14) | 0.6025 (3) | 0.0457 (8) | |
C20 | 0.0812 (3) | 0.70147 (17) | 0.6251 (4) | 0.0596 (9) | |
H20 | 0.0476 | 0.7392 | 0.5743 | 0.072* | |
C21 | 0.0311 (3) | 0.6654 (2) | 0.7228 (4) | 0.0664 (10) | |
H21 | −0.0362 | 0.6791 | 0.7382 | 0.080* | |
C22 | 0.0792 (3) | 0.60940 (19) | 0.7976 (4) | 0.0637 (10) | |
H22 | 0.0449 | 0.5855 | 0.8639 | 0.076* | |
C23 | 0.1787 (3) | 0.58855 (15) | 0.7748 (4) | 0.0509 (8) | |
H23 | 0.2117 | 0.5505 | 0.8245 | 0.061* | |
Br24 | 0.25462 (3) | 0.731793 (18) | 0.47628 (4) | 0.06770 (16) | |
C25 | 0.8105 (3) | 0.51466 (16) | 0.6062 (4) | 0.0605 (9) | |
H25A | 0.8261 | 0.4728 | 0.6587 | 0.091* | |
H25B | 0.8685 | 0.5449 | 0.6522 | 0.091* | |
H25C | 0.8050 | 0.5098 | 0.4923 | 0.091* | |
S26 | 0.17372 (8) | 0.40673 (5) | 0.95720 (10) | 0.0608 (3) | |
O27 | 0.2606 (2) | 0.41546 (17) | 0.8843 (4) | 0.1142 (11) | |
O28 | 0.1816 (3) | 0.35388 (13) | 1.0698 (3) | 0.0968 (9) | |
O29 | 0.1332 (2) | 0.46570 (12) | 1.0126 (3) | 0.0852 (8) | |
C30 | 0.0621 (3) | 0.38096 (18) | 0.7915 (4) | 0.0625 (9) | |
F31 | 0.0855 (2) | 0.32387 (11) | 0.7309 (3) | 0.0976 (7) | |
F32 | 0.0450 (2) | 0.42450 (12) | 0.6698 (2) | 0.0985 (7) | |
F33 | −0.03080 (19) | 0.37394 (13) | 0.8308 (3) | 0.1006 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.044 (2) | 0.0501 (19) | 0.0606 (18) | 0.0065 (16) | 0.0176 (16) | 0.0073 (15) |
C2 | 0.056 (2) | 0.0465 (18) | 0.072 (2) | −0.0008 (17) | 0.0180 (19) | 0.0134 (16) |
C3 | 0.053 (2) | 0.063 (2) | 0.061 (2) | −0.0112 (18) | 0.0200 (17) | 0.0060 (16) |
C4 | 0.045 (2) | 0.060 (2) | 0.0563 (18) | −0.0036 (17) | 0.0233 (16) | −0.0003 (15) |
C5 | 0.053 (2) | 0.0488 (19) | 0.0603 (19) | 0.0127 (17) | 0.0193 (16) | −0.0009 (15) |
C6 | 0.068 (3) | 0.0403 (18) | 0.068 (2) | 0.0100 (18) | 0.0181 (19) | 0.0076 (15) |
C7 | 0.051 (2) | 0.050 (2) | 0.0576 (19) | −0.0015 (17) | 0.0163 (16) | 0.0083 (15) |
C8 | 0.0402 (19) | 0.0512 (19) | 0.0463 (16) | 0.0000 (15) | 0.0122 (14) | 0.0017 (14) |
C9 | 0.0288 (16) | 0.0437 (17) | 0.0319 (13) | 0.0022 (13) | 0.0035 (12) | −0.0038 (12) |
N10 | 0.0327 (14) | 0.0451 (14) | 0.0426 (13) | 0.0004 (12) | 0.0120 (11) | −0.0088 (11) |
C11 | 0.0318 (17) | 0.0444 (17) | 0.0365 (14) | −0.0006 (14) | 0.0065 (13) | 0.0004 (12) |
C12 | 0.0351 (18) | 0.0513 (19) | 0.0350 (14) | −0.0040 (15) | 0.0086 (13) | −0.0073 (13) |
C13 | 0.0297 (17) | 0.0463 (18) | 0.0328 (14) | 0.0000 (13) | 0.0058 (12) | −0.0044 (12) |
C14 | 0.0345 (18) | 0.0438 (18) | 0.0342 (14) | 0.0004 (14) | 0.0056 (13) | −0.0061 (12) |
C15 | 0.0392 (19) | 0.0388 (16) | 0.0392 (16) | 0.0002 (14) | 0.0112 (14) | 0.0036 (13) |
O16 | 0.0297 (11) | 0.0477 (11) | 0.0461 (11) | 0.0011 (9) | 0.0102 (9) | −0.0073 (9) |
O17 | 0.0409 (13) | 0.0674 (14) | 0.0534 (12) | −0.0011 (11) | 0.0105 (10) | −0.0193 (11) |
C18 | 0.0297 (17) | 0.0493 (18) | 0.0453 (15) | 0.0000 (15) | 0.0079 (13) | −0.0118 (14) |
C19 | 0.0331 (19) | 0.0549 (19) | 0.0455 (16) | 0.0011 (15) | 0.0031 (14) | −0.0113 (14) |
C20 | 0.045 (2) | 0.065 (2) | 0.062 (2) | 0.0092 (19) | −0.0010 (17) | −0.0164 (18) |
C21 | 0.032 (2) | 0.091 (3) | 0.076 (2) | −0.001 (2) | 0.0114 (19) | −0.033 (2) |
C22 | 0.048 (2) | 0.085 (3) | 0.062 (2) | −0.016 (2) | 0.0208 (18) | −0.0191 (19) |
C23 | 0.042 (2) | 0.0555 (19) | 0.0585 (19) | −0.0048 (16) | 0.0189 (16) | −0.0061 (15) |
Br24 | 0.0705 (3) | 0.0676 (3) | 0.0633 (2) | 0.01066 (19) | 0.01349 (18) | 0.01921 (17) |
C25 | 0.045 (2) | 0.058 (2) | 0.086 (2) | 0.0032 (17) | 0.0298 (18) | −0.0099 (18) |
S26 | 0.0498 (6) | 0.0710 (6) | 0.0608 (5) | −0.0004 (4) | 0.0121 (4) | −0.0092 (4) |
O27 | 0.0577 (19) | 0.157 (3) | 0.143 (3) | −0.0291 (19) | 0.0528 (18) | −0.044 (2) |
O28 | 0.130 (3) | 0.0818 (18) | 0.0673 (15) | 0.0238 (17) | 0.0033 (16) | 0.0126 (14) |
O29 | 0.108 (2) | 0.0632 (16) | 0.0888 (17) | 0.0013 (15) | 0.0326 (16) | −0.0232 (13) |
C30 | 0.060 (3) | 0.074 (3) | 0.061 (2) | −0.008 (2) | 0.0304 (19) | −0.0021 (19) |
F31 | 0.123 (2) | 0.0832 (16) | 0.0873 (14) | −0.0155 (14) | 0.0280 (14) | −0.0331 (12) |
F32 | 0.1056 (19) | 0.1177 (19) | 0.0672 (13) | 0.0148 (15) | 0.0119 (13) | 0.0236 (13) |
F33 | 0.0587 (15) | 0.140 (2) | 0.1082 (17) | −0.0275 (14) | 0.0301 (13) | −0.0134 (15) |
C1—C2 | 1.343 (4) | C13—C14 | 1.412 (4) |
C1—C11 | 1.434 (4) | C15—O17 | 1.192 (3) |
C1—H1 | 0.9300 | C15—O16 | 1.342 (3) |
C2—C3 | 1.397 (5) | O16—C18 | 1.417 (3) |
C2—H2 | 0.9300 | C18—C23 | 1.372 (4) |
C3—C4 | 1.362 (5) | C18—C19 | 1.373 (4) |
C3—H3 | 0.9300 | C19—C20 | 1.383 (4) |
C4—C12 | 1.407 (4) | C19—Br24 | 1.882 (3) |
C4—H4 | 0.9300 | C20—C21 | 1.375 (5) |
C5—C6 | 1.351 (4) | C20—H20 | 0.9300 |
C5—C14 | 1.419 (4) | C21—C22 | 1.371 (5) |
C5—H5 | 0.9300 | C21—H21 | 0.9300 |
C6—C7 | 1.394 (4) | C22—C23 | 1.380 (5) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C7—C8 | 1.346 (4) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C25—H25A | 0.9600 |
C8—C13 | 1.424 (4) | C25—H25B | 0.9600 |
C8—H8 | 0.9300 | C25—H25C | 0.9600 |
C9—C11 | 1.391 (4) | S26—O27 | 1.397 (3) |
C9—C13 | 1.406 (4) | S26—O28 | 1.428 (3) |
C9—C15 | 1.505 (4) | S26—O29 | 1.430 (2) |
N10—C14 | 1.362 (3) | S26—C30 | 1.801 (4) |
N10—C12 | 1.378 (3) | C30—F33 | 1.301 (4) |
N10—C25 | 1.476 (4) | C30—F31 | 1.334 (4) |
C11—C12 | 1.416 (4) | C30—F32 | 1.340 (4) |
C2—C1—C11 | 120.7 (3) | C13—C14—C5 | 118.7 (3) |
C2—C1—H1 | 119.7 | O17—C15—O16 | 124.5 (3) |
C11—C1—H1 | 119.7 | O17—C15—C9 | 124.6 (3) |
C1—C2—C3 | 120.5 (3) | O16—C15—C9 | 110.8 (2) |
C1—C2—H2 | 119.7 | C15—O16—C18 | 117.1 (2) |
C3—C2—H2 | 119.7 | C23—C18—C19 | 122.0 (3) |
C4—C3—C2 | 121.2 (3) | C23—C18—O16 | 118.3 (3) |
C4—C3—H3 | 119.4 | C19—C18—O16 | 119.6 (3) |
C2—C3—H3 | 119.4 | C18—C19—C20 | 118.6 (3) |
C3—C4—C12 | 119.8 (3) | C18—C19—Br24 | 120.5 (2) |
C3—C4—H4 | 120.1 | C20—C19—Br24 | 120.9 (3) |
C12—C4—H4 | 120.1 | C21—C20—C19 | 120.0 (3) |
C6—C5—C14 | 119.6 (3) | C21—C20—H20 | 120.0 |
C6—C5—H5 | 120.2 | C19—C20—H20 | 120.0 |
C14—C5—H5 | 120.2 | C22—C21—C20 | 120.7 (3) |
C5—C6—C7 | 122.4 (3) | C22—C21—H21 | 119.7 |
C5—C6—H6 | 118.8 | C20—C21—H21 | 119.7 |
C7—C6—H6 | 118.8 | C21—C22—C23 | 120.0 (3) |
C8—C7—C6 | 119.5 (3) | C21—C22—H22 | 120.0 |
C8—C7—H7 | 120.3 | C23—C22—H22 | 120.0 |
C6—C7—H7 | 120.3 | C18—C23—C22 | 118.8 (3) |
C7—C8—C13 | 120.9 (3) | C18—C23—H23 | 120.6 |
C7—C8—H8 | 119.5 | C22—C23—H23 | 120.6 |
C13—C8—H8 | 119.5 | N10—C25—H25A | 109.5 |
C11—C9—C13 | 120.8 (3) | N10—C25—H25B | 109.5 |
C11—C9—C15 | 119.5 (2) | H25A—C25—H25B | 109.5 |
C13—C9—C15 | 119.6 (3) | N10—C25—H25C | 109.5 |
C14—N10—C12 | 121.7 (2) | H25A—C25—H25C | 109.5 |
C14—N10—C25 | 120.3 (2) | H25B—C25—H25C | 109.5 |
C12—N10—C25 | 117.9 (2) | O27—S26—O28 | 117.6 (2) |
C9—C11—C12 | 119.2 (3) | O27—S26—O29 | 115.00 (18) |
C9—C11—C1 | 122.7 (3) | O28—S26—O29 | 112.46 (17) |
C12—C11—C1 | 118.0 (3) | O27—S26—C30 | 103.37 (18) |
N10—C12—C4 | 121.1 (3) | O28—S26—C30 | 102.49 (17) |
N10—C12—C11 | 119.3 (3) | O29—S26—C30 | 103.38 (17) |
C4—C12—C11 | 119.6 (3) | F33—C30—F31 | 107.6 (3) |
C9—C13—C14 | 118.3 (3) | F33—C30—F32 | 106.9 (3) |
C9—C13—C8 | 122.8 (3) | F31—C30—F32 | 106.6 (3) |
C14—C13—C8 | 118.9 (3) | F33—C30—S26 | 113.8 (2) |
N10—C14—C13 | 120.5 (2) | F31—C30—S26 | 110.6 (3) |
N10—C14—C5 | 120.9 (3) | F32—C30—S26 | 110.8 (2) |
C11—C1—C2—C3 | 1.5 (5) | C8—C13—C14—N10 | 177.1 (2) |
C1—C2—C3—C4 | −1.9 (5) | C9—C13—C14—C5 | 177.5 (2) |
C2—C3—C4—C12 | −0.2 (4) | C8—C13—C14—C5 | −2.0 (4) |
C14—C5—C6—C7 | −0.1 (5) | C6—C5—C14—N10 | −177.1 (3) |
C5—C6—C7—C8 | −1.7 (5) | C6—C5—C14—C13 | 2.0 (4) |
C6—C7—C8—C13 | 1.6 (4) | C11—C9—C15—O17 | −65.8 (3) |
C13—C9—C11—C12 | 1.2 (4) | C13—C9—C15—O17 | 110.5 (3) |
C15—C9—C11—C12 | 177.5 (2) | C11—C9—C15—O16 | 113.1 (3) |
C13—C9—C11—C1 | 179.5 (2) | C13—C9—C15—O16 | −70.5 (3) |
C15—C9—C11—C1 | −4.3 (4) | O17—C15—O16—C18 | −1.1 (4) |
C2—C1—C11—C9 | −177.3 (3) | C9—C15—O16—C18 | 179.9 (2) |
C2—C1—C11—C12 | 1.0 (4) | C15—O16—C18—C23 | −94.4 (3) |
C14—N10—C12—C4 | −175.8 (2) | C15—O16—C18—C19 | 89.3 (3) |
C25—N10—C12—C4 | 7.3 (4) | C23—C18—C19—C20 | −0.9 (4) |
C14—N10—C12—C11 | 4.1 (3) | O16—C18—C19—C20 | 175.3 (2) |
C25—N10—C12—C11 | −172.7 (2) | C23—C18—C19—Br24 | 177.7 (2) |
C3—C4—C12—N10 | −177.4 (3) | O16—C18—C19—Br24 | −6.2 (3) |
C3—C4—C12—C11 | 2.7 (4) | C18—C19—C20—C21 | 1.0 (4) |
C9—C11—C12—N10 | −4.6 (3) | Br24—C19—C20—C21 | −177.5 (2) |
C1—C11—C12—N10 | 177.0 (2) | C19—C20—C21—C22 | −0.4 (5) |
C9—C11—C12—C4 | 175.3 (2) | C20—C21—C22—C23 | −0.3 (5) |
C1—C11—C12—C4 | −3.0 (4) | C19—C18—C23—C22 | 0.2 (4) |
C11—C9—C13—C14 | 2.7 (3) | O16—C18—C23—C22 | −176.0 (2) |
C15—C9—C13—C14 | −173.5 (2) | C21—C22—C23—C18 | 0.4 (4) |
C11—C9—C13—C8 | −177.8 (2) | O27—S26—C30—F33 | −175.8 (3) |
C15—C9—C13—C8 | 6.0 (4) | O28—S26—C30—F33 | 61.5 (3) |
C7—C8—C13—C9 | −179.3 (2) | O29—S26—C30—F33 | −55.6 (3) |
C7—C8—C13—C14 | 0.2 (4) | O27—S26—C30—F31 | 62.8 (3) |
C12—N10—C14—C13 | 0.0 (3) | O28—S26—C30—F31 | −59.9 (3) |
C25—N10—C14—C13 | 176.7 (2) | O29—S26—C30—F31 | −177.0 (2) |
C12—N10—C14—C5 | 179.0 (2) | O27—S26—C30—F32 | −55.2 (3) |
C25—N10—C14—C5 | −4.2 (4) | O28—S26—C30—F32 | −177.9 (3) |
C9—C13—C14—N10 | −3.4 (3) | O29—S26—C30—F32 | 65.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O28i | 0.93 | 2.54 | 3.289 (5) | 137 |
C7—H7···O27 | 0.93 | 2.54 | 3.200 (5) | 128 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C21H15BrNO2+·CF3O3S− |
Mr | 542.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 12.5718 (8), 20.3617 (16), 8.5162 (6) |
β (°) | 104.498 (7) |
V (Å3) | 2110.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.11 |
Crystal size (mm) | 0.46 × 0.25 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.668, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16372, 3735, 2348 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.088, 0.92 |
No. of reflections | 3735 |
No. of parameters | 299 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.40 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O28i | 0.93 | 2.54 | 3.289 (5) | 137 |
C7—H7···O27 | 0.93 | 2.54 | 3.200 (5) | 128 |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively. |
X—I···J | I···J | X···J | X—I···J |
C19—Br24···Cg4ii | 3.523 (2) | 4.847 (3) | 124.6 (1) |
C30—F32···Cg4iii | 3.648 (2) | 4.310 (4) | 110.8 (2) |
S26—O27···Cg1iv | 3.821 (3) | 3.708 (2) | 74.8 (2) |
S26—O28···Cg1iv | 3.414 (3) | 3.708 (2) | 90.3 (2) |
S26—O28···Cg2iv | 3.358 (3) | 4.445 (2) | 132.2 (2) |
Symmetry codes: (ii) x, –y + 3/2, z – 1/2; (iii) –x, –y + 1, –z + 1; (iv) –x + 1, –y + 1, –z + 2. |
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 3v | 3.744 (2) | 2.74 (13) | 3.703 (2) | 0.553 (2) |
3 | 1v | 3.744 (2) | 2.74 (13) | 3.717 (2) | 0.549 (2) |
Symmetry code: (v) –x + 1, –y + 1, –z + 1. |
Acknowledgements
This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40). DT acknowledges financial support from the European Social Fund within the project "Educators for the elite - integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdańsk" and the Human Capital Operational Program Action 4.1.1, Improving the quality on offer at tertiary educational institutions. This publication reflects the views only of the author: the sponsor cannot be held responsible for any use which may be made of the information contained therein.
References
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085. Web of Science PubMed Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The well-known chemiluminescence of 9-(phenoxycarbonyl)-10-methylacridinium salts has been utilized in chemiluminescent indicators and labels, which are commonly applied in assays of biologically and environmentally important entities (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Krzymiński et al., 2011). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In continuing our investigations on the latter aspect, we synthesized 9-(2-bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose crystal structure is presented here.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0519 (3) Å and 0.0034 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 18.7 (1)°. The carboxyl group is twisted at an angle of 69.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 27.8 (1)° in the crystal.
The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the adjacent cations are linked by C–Br···π (Table 2, Fig. 2) and π-π (Table 3, Fig.2) contacts, and the cations and neighboring anions via C–H···O (Table 1, Figs. 1 and 2), C–F···π (Table 2, Fig. 2) and S–O···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006). The C–F···π (Dorn et al., 2005), S–O···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions should be of an attractive nature. The C–Br···π interactions have been reported by others (Seo et al., 2009). We have found all the above interactions in many other 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates (e.g. Sikorski et al., 2005; Trzybiński et al., 2010). Mentioning them here is important in the context of the analysis and understanding of the crystal architecture of this group of compounds. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.