metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2-acetyl­cyclo­pentan-1-onato-κ2O,O′)aluminium

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, P. O. Box 537, SI-1000 Ljubljana, Slovenia, and CO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si

(Received 30 April 2012; accepted 14 May 2012; online 19 May 2012)

In the title compound, [Al(C7H9O2)3], the AlIII cation is coordinated by six O atoms from three 2-acetyl­cyclo­penta­nonate ligands in a slightly distorted octa­hedral environment, with Al—O bond lengths in the range 1.882 (2)–1.896 (2) Å. In the crystal, mol­ecules are linked together via C—H⋯O inter­actions. One of the C atoms in one ring has a large thermal motion compared to the other atoms, indicating some possible disorder. However, the treatment of this C atom as disordered over two positions did not give a significant improvement.

Related literature

For applications of metal complexes with β-diketones, see: Bray et al. (2007[Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1-37.]); Garibay et al. (2009[Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335-378.]); Lutz et al. (1989[Lutz, T. G., Clevette, D. J., Rettig, S. J. & Orvig, C. (1989). Inorg. Chem. 28, 715-719.]); Perdih (2011[Perdih, F. (2011). Acta Cryst. E67, m1697.]); Vreshch et al. (2004[Vreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sieler, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899-2903.]); Wu & Wang (2009[Wu, H.-B. & Wang, Q.-M. (2009). Angew. Chem. Int. Ed. 48, 7343-7345.]). For related structures, see: Hon & Pfluger (1973[Hon, P. K. & Pfluger, C. E. (1973). J. Coord. Chem. 3, 67-76.]); Schröder et al. (2011[Schröder, K., Join, B., Amali, A. J., Junge, K., Ribas, X., Costas, M. & Beller, M. (2011). Angew. Chem. Int. Ed. 50, 1425-1429.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(C7H9O2)3]

  • Mr = 402.41

  • Monoclinic, P 21 /c

  • a = 8.1785 (3) Å

  • b = 15.7494 (6) Å

  • c = 15.6615 (5) Å

  • β = 94.039 (2)°

  • V = 2012.29 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.25 × 0.15 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.967, Tmax = 0.989

  • 8554 measured reflections

  • 4523 independent reflections

  • 3007 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.228

  • S = 1.03

  • 4523 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O6i 0.97 2.54 3.427 (4) 153
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

β-Diketonates have been proven to be versatile ligands for various metal ions. They can be easily derivatized, thus modifying the electronic and steric nature of these ligands to design suitable structure/function relationship (Bray et al., 2007; Garibay et al., 2009; Perdih, 2011). β-diketonate compounds of aluminium have received great attention due to the promise of the construction of cages (Vreshch et al., 2004; Wu & Wang, 2009). Besides that, the title compound is a close analogue of aluminium isomaltolato compound that was prepared for in vivo examinations of ion transport in order to shed some light on the mechanism of transport and the involvement of Al in neurological disorders (Lutz et al., 1989).

In the title molecule (Fig. 1), the aluminium(III) cation is surrounded by six O atoms from three 2-acetylcyclopentanonate ligands in a octahedral environment. The geometry around aluminium is close to the orthogonallity as can be seen from the angles. The Al—O bond lengths in the range 1.882 (2)–1.896 (2) Å and are similar as for example in Al(acac)3 (Hon & Pfluger, 1973). All three cyclopentyl rings deviates from the expected envelope conformation and they are close to planarity, with torsion angles C3–C4–C5–C6 - 7.2 (4), C10–C11–C12–C13 - 17.6 (4)° and C17–C18–C19–C20 5.0 (5)°. Such small torsion angles are often observed in cyclopentyl and 1,3-dioxolyl rings condensed to aromatic or delocalized systems. This values are somewhat smaller then in analogues iron(III) compound (Schröder et al., 2011). 1-D framework is achieved due to weak intermolecular C12–H12B···O6(x – 1, y, z) interactions (Fig. 2).

Related literature top

For applications of metal complexes with β-diketones, see: Bray et al. (2007); Garibay et al. (2009); Lutz et al. (1989); Perdih (2011); Vreshch et al. (2004); Wu & Wang (2009). For related structures, see: Hon & Pfluger (1973); Schröder et al. (2011).

Experimental top

To a clear solution of Al2(SO4)3.18H2O (1 mmol, 0.67 g) in water (15 ml) a solution of 2-acetylcyclopentanone (6 mmol, 0.76 g) in methanol (5 ml) was added while stirring. Afterwards the 1 M NaOH (6 ml) was slowly added and the resulting solution stirred at 70°C for 15 minutes. After cooling to the room temperature the light pink product was filtrated and washed with water (20 ml), and subsequently air-dried. Yield: 0.47 g, 58%. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement top

All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C–H = 0.97 (methylene) or 0.96 Å (methyl) and with Uiso(H) = kUeq(C), where k = 1.5 for methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. To improve the refinement results, one reflection with too high value of δ(F2)/e.s.d. and with Fo2 < Fc2 was deleted from the refinement. Displacement ellipsoid of C20 is large compared to the other atoms, however the treatement of C20 as disorderd over two positions did not improve the model.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A chain formation. Dashed lines indicate intermolecular C12—H12B···O6 hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry code: i = x – 1, y, z.
Tris(2-acetylcyclopentan-1-onato-κ2O,O')aluminium top
Crystal data top
[Al(C7H9O2)3]F(000) = 856
Mr = 402.41Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4677 reflections
a = 8.1785 (3) Åθ = 2.6–27.5°
b = 15.7494 (6) ŵ = 0.14 mm1
c = 15.6615 (5) ÅT = 293 K
β = 94.039 (2)°Prism, pink
V = 2012.29 (12) Å30.25 × 0.15 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4523 independent reflections
Graphite monochromator3007 reflections with I > 2σ(I)
Detector resolution: 0.055 pixels mm-1Rint = 0.031
ω scansθmax = 27.4°, θmin = 5.4°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.967, Tmax = 0.989k = 1920
8554 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1175P)2 + 1.0495P]
where P = (Fo2 + 2Fc2)/3
4523 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Al(C7H9O2)3]V = 2012.29 (12) Å3
Mr = 402.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1785 (3) ŵ = 0.14 mm1
b = 15.7494 (6) ÅT = 293 K
c = 15.6615 (5) Å0.25 × 0.15 × 0.08 mm
β = 94.039 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4523 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3007 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.989Rint = 0.031
8554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
4523 reflectionsΔρmin = 0.27 e Å3
256 parameters
Special details top

Experimental. 259 frames in 6 sets of ω scans. Rotation/frame = 1.6 °. Crystal-detector distance = 25.00 mm. Measuring time = 135 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.14039 (11)0.17092 (6)0.83613 (6)0.0532 (3)
O10.1108 (3)0.05260 (14)0.85125 (16)0.0650 (6)
O20.2377 (3)0.18225 (13)0.94807 (14)0.0597 (5)
O30.1711 (3)0.28903 (15)0.82273 (15)0.0652 (6)
O40.0712 (3)0.18733 (13)0.87403 (15)0.0614 (6)
O50.0428 (3)0.16358 (16)0.72368 (15)0.0680 (6)
O60.3511 (3)0.15136 (16)0.79798 (14)0.0643 (6)
C10.1271 (5)0.0881 (2)0.9056 (3)0.0782 (11)
H1A0.01110.09690.89620.117*
H1B0.16690.11680.9570.117*
H1C0.18120.11020.85790.117*
C20.1616 (4)0.0054 (2)0.9145 (2)0.0615 (8)
C30.2455 (4)0.0367 (2)0.9884 (2)0.0592 (8)
C40.2763 (4)0.1222 (2)1.0002 (2)0.0558 (7)
C50.3627 (5)0.1393 (3)1.0861 (2)0.0723 (9)
H5A0.2920.17061.12210.087*
H5B0.46150.17221.080.087*
C60.4041 (6)0.0539 (3)1.1243 (3)0.0898 (12)
H6A0.37120.0511.18250.108*
H6B0.52120.04371.12510.108*
C70.3097 (5)0.0125 (3)1.0675 (3)0.0827 (11)
H7A0.3820.05811.05210.099*
H7B0.220.03661.09690.099*
C80.1261 (6)0.4374 (3)0.8147 (4)0.0965 (14)
H8A0.24060.43990.83280.145*
H8B0.06650.47550.84890.145*
H8C0.11050.45360.75560.145*
C90.0646 (4)0.3488 (2)0.8254 (2)0.0618 (8)
C100.0975 (4)0.3343 (2)0.8415 (2)0.0613 (8)
C110.1526 (4)0.25647 (19)0.86725 (19)0.0544 (7)
C120.3253 (4)0.2623 (2)0.8937 (3)0.0708 (9)
H12A0.32740.26350.95550.085*
H12B0.39080.21490.87140.085*
C130.3866 (5)0.3453 (3)0.8545 (4)0.0978 (14)
H13A0.46170.37280.89090.117*
H13B0.44270.33560.79870.117*
C140.2323 (5)0.4006 (3)0.8464 (3)0.0885 (12)
H14A0.24230.43520.79510.106*
H14B0.2120.43710.89590.106*
C150.0005 (6)0.1580 (4)0.5720 (3)0.1018 (15)
H15A0.10990.14440.58410.153*
H15B0.03760.11840.53090.153*
H15C0.00410.21450.54920.153*
C160.1110 (5)0.1527 (2)0.6540 (2)0.0656 (8)
C170.2757 (4)0.1371 (2)0.6491 (2)0.0637 (8)
C180.3859 (4)0.1378 (2)0.7208 (2)0.0601 (8)
C190.5569 (5)0.1223 (3)0.6982 (3)0.0901 (13)
H19A0.6050.07430.72960.108*
H19B0.6250.1720.70960.108*
C200.5346 (8)0.1031 (6)0.5998 (4)0.146 (3)
H20A0.60770.13870.56930.175*
H20B0.5620.04420.58930.175*
C210.3599 (6)0.1200 (3)0.5679 (2)0.0795 (11)
H21A0.31230.07110.53780.095*
H21B0.35250.16880.53010.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0445 (5)0.0518 (5)0.0634 (6)0.0021 (4)0.0050 (4)0.0008 (4)
O10.0590 (13)0.0509 (12)0.0843 (15)0.0013 (10)0.0007 (11)0.0063 (11)
O20.0647 (13)0.0506 (11)0.0634 (12)0.0003 (10)0.0028 (10)0.0003 (10)
O30.0507 (12)0.0577 (13)0.0871 (16)0.0048 (10)0.0049 (11)0.0115 (11)
O40.0499 (12)0.0530 (12)0.0826 (15)0.0004 (9)0.0134 (10)0.0020 (11)
O50.0501 (12)0.0859 (17)0.0672 (14)0.0022 (11)0.0006 (10)0.0017 (12)
O60.0453 (11)0.0830 (16)0.0647 (13)0.0085 (10)0.0057 (9)0.0047 (11)
C10.070 (2)0.0508 (18)0.114 (3)0.0067 (16)0.007 (2)0.0023 (19)
C20.0438 (15)0.0476 (16)0.095 (2)0.0028 (12)0.0168 (15)0.0003 (16)
C30.0484 (16)0.0518 (16)0.078 (2)0.0044 (13)0.0108 (14)0.0075 (15)
C40.0490 (16)0.0591 (17)0.0602 (17)0.0036 (13)0.0098 (13)0.0031 (14)
C50.072 (2)0.077 (2)0.067 (2)0.0015 (18)0.0044 (17)0.0000 (17)
C60.093 (3)0.088 (3)0.088 (3)0.010 (2)0.005 (2)0.006 (2)
C70.069 (2)0.079 (2)0.101 (3)0.0039 (19)0.009 (2)0.026 (2)
C80.084 (3)0.058 (2)0.146 (4)0.0124 (19)0.004 (3)0.022 (2)
C90.0634 (19)0.0520 (16)0.0686 (19)0.0011 (15)0.0040 (15)0.0059 (14)
C100.0619 (19)0.0563 (17)0.0654 (18)0.0077 (15)0.0026 (15)0.0013 (15)
C110.0469 (15)0.0561 (17)0.0598 (17)0.0030 (13)0.0016 (12)0.0059 (13)
C120.0502 (18)0.080 (2)0.083 (2)0.0036 (16)0.0112 (16)0.0066 (19)
C130.067 (2)0.102 (3)0.124 (4)0.023 (2)0.012 (2)0.008 (3)
C140.087 (3)0.074 (2)0.105 (3)0.028 (2)0.010 (2)0.005 (2)
C150.104 (4)0.122 (4)0.077 (3)0.016 (3)0.013 (2)0.010 (3)
C160.069 (2)0.0590 (18)0.068 (2)0.0097 (16)0.0007 (16)0.0029 (15)
C170.071 (2)0.0559 (17)0.0649 (19)0.0040 (16)0.0126 (16)0.0000 (15)
C180.0561 (17)0.0505 (16)0.075 (2)0.0022 (13)0.0158 (15)0.0019 (15)
C190.071 (2)0.089 (3)0.114 (3)0.012 (2)0.030 (2)0.000 (2)
C200.108 (4)0.223 (8)0.111 (4)0.045 (5)0.040 (3)0.004 (5)
C210.097 (3)0.080 (2)0.064 (2)0.004 (2)0.0191 (19)0.0013 (18)
Geometric parameters (Å, º) top
Al1—O21.882 (2)C8—H8B0.96
Al1—O51.885 (2)C8—H8C0.96
Al1—O41.887 (2)C9—C101.386 (5)
Al1—O61.889 (2)C10—C111.377 (4)
Al1—O31.891 (2)C10—C141.524 (5)
Al1—O11.896 (2)C11—C121.502 (4)
O1—C21.284 (4)C12—C131.514 (6)
O2—C41.274 (4)C12—H12A0.97
O3—C91.285 (4)C12—H12B0.97
O4—C111.277 (4)C13—C141.545 (7)
O5—C161.272 (4)C13—H13A0.97
O6—C181.279 (4)C13—H13B0.97
C1—C21.504 (5)C14—H14A0.97
C1—H1A0.96C14—H14B0.97
C1—H1B0.96C15—C161.519 (5)
C1—H1C0.96C15—H15A0.96
C2—C31.392 (5)C15—H15B0.96
C3—C41.380 (4)C15—H15C0.96
C3—C71.524 (5)C16—C171.376 (5)
C4—C51.499 (5)C17—C181.389 (5)
C5—C61.501 (6)C17—C211.512 (5)
C5—H5A0.97C18—C191.486 (5)
C5—H5B0.97C19—C201.569 (7)
C6—C71.544 (6)C19—H19A0.97
C6—H6A0.97C19—H19B0.97
C6—H6B0.97C20—C211.504 (7)
C7—H7A0.97C20—H20A0.97
C7—H7B0.97C20—H20B0.97
C8—C91.496 (5)C21—H21A0.97
C8—H8A0.96C21—H21B0.97
O2—Al1—O5178.08 (11)O3—C9—C10123.0 (3)
O2—Al1—O491.78 (11)O3—C9—C8116.5 (3)
O5—Al1—O487.99 (11)C10—C9—C8120.4 (3)
O2—Al1—O688.54 (10)C11—C10—C9122.5 (3)
O5—Al1—O691.73 (10)C11—C10—C14110.0 (3)
O4—Al1—O6178.47 (11)C9—C10—C14127.0 (3)
O2—Al1—O387.68 (10)O4—C11—C10127.2 (3)
O5—Al1—O390.43 (11)O4—C11—C12121.6 (3)
O4—Al1—O391.84 (10)C10—C11—C12111.1 (3)
O6—Al1—O389.67 (11)C11—C12—C13103.4 (3)
O2—Al1—O191.50 (10)C11—C12—H12A111.1
O5—Al1—O190.40 (11)C13—C12—H12A111.1
O4—Al1—O188.12 (10)C11—C12—H12B111.1
O6—Al1—O190.38 (11)C13—C12—H12B111.1
O3—Al1—O1179.17 (12)H12A—C12—H12B109
C2—O1—Al1128.9 (2)C12—C13—C14105.7 (3)
C4—O2—Al1126.6 (2)C12—C13—H13A110.6
C9—O3—Al1128.4 (2)C14—C13—H13A110.6
C11—O4—Al1125.1 (2)C12—C13—H13B110.6
C16—O5—Al1128.9 (2)C14—C13—H13B110.6
C18—O6—Al1126.5 (2)H13A—C13—H13B108.7
C2—C1—H1A109.5C10—C14—C13102.5 (3)
C2—C1—H1B109.5C10—C14—H14A111.3
H1A—C1—H1B109.5C13—C14—H14A111.3
C2—C1—H1C109.5C10—C14—H14B111.3
H1A—C1—H1C109.5C13—C14—H14B111.3
H1B—C1—H1C109.5H14A—C14—H14B109.2
O1—C2—C3123.4 (3)C16—C15—H15A109.5
O1—C2—C1116.5 (3)C16—C15—H15B109.5
C3—C2—C1120.1 (3)H15A—C15—H15B109.5
C4—C3—C2122.1 (3)C16—C15—H15C109.5
C4—C3—C7109.8 (3)H15A—C15—H15C109.5
C2—C3—C7128.1 (3)H15B—C15—H15C109.5
O2—C4—C3127.1 (3)O5—C16—C17124.2 (3)
O2—C4—C5121.4 (3)O5—C16—C15116.5 (4)
C3—C4—C5111.4 (3)C17—C16—C15119.3 (4)
C4—C5—C6106.0 (3)C16—C17—C18122.4 (3)
C4—C5—H5A110.5C16—C17—C21125.7 (3)
C6—C5—H5A110.5C18—C17—C21111.9 (3)
C4—C5—H5B110.5O6—C18—C17126.2 (3)
C6—C5—H5B110.5O6—C18—C19121.8 (3)
H5A—C5—H5B108.7C17—C18—C19112.0 (3)
C5—C6—C7106.8 (3)C18—C19—C20102.7 (4)
C5—C6—H6A110.4C18—C19—H19A111.2
C7—C6—H6A110.4C20—C19—H19A111.2
C5—C6—H6B110.4C18—C19—H19B111.2
C7—C6—H6B110.4C20—C19—H19B111.2
H6A—C6—H6B108.6H19A—C19—H19B109.1
C3—C7—C6104.6 (3)C21—C20—C19109.5 (4)
C3—C7—H7A110.8C21—C20—H20A109.8
C6—C7—H7A110.8C19—C20—H20A109.8
C3—C7—H7B110.8C21—C20—H20B109.8
C6—C7—H7B110.8C19—C20—H20B109.8
H7A—C7—H7B108.9H20A—C20—H20B108.2
C9—C8—H8A109.5C20—C21—C17103.4 (4)
C9—C8—H8B109.5C20—C21—H21A111.1
H8A—C8—H8B109.5C17—C21—H21A111.1
C9—C8—H8C109.5C20—C21—H21B111.1
H8A—C8—H8C109.5C17—C21—H21B111.1
H8B—C8—H8C109.5H21A—C21—H21B109.1
O2—Al1—O1—C26.5 (3)C4—C3—C7—C67.2 (4)
O5—Al1—O1—C2173.8 (3)C2—C3—C7—C6175.3 (3)
O4—Al1—O1—C298.2 (3)C5—C6—C7—C311.3 (4)
O6—Al1—O1—C282.0 (3)Al1—O3—C9—C101.7 (5)
O4—Al1—O2—C495.2 (2)Al1—O3—C9—C8178.5 (3)
O6—Al1—O2—C483.3 (3)O3—C9—C10—C118.9 (5)
O3—Al1—O2—C4173.0 (3)C8—C9—C10—C11167.7 (4)
O1—Al1—O2—C47.1 (3)O3—C9—C10—C14179.6 (4)
O2—Al1—O3—C9102.5 (3)C8—C9—C10—C143.0 (6)
O5—Al1—O3—C977.2 (3)Al1—O4—C11—C108.6 (5)
O4—Al1—O3—C910.8 (3)Al1—O4—C11—C12175.7 (2)
O6—Al1—O3—C9169.0 (3)C9—C10—C11—O45.3 (6)
O2—Al1—O4—C11101.5 (3)C14—C10—C11—O4177.4 (3)
O5—Al1—O4—C1176.6 (3)C9—C10—C11—C12170.8 (3)
O3—Al1—O4—C1113.7 (3)C14—C10—C11—C121.3 (4)
O1—Al1—O4—C11167.1 (3)O4—C11—C12—C13166.0 (3)
O4—Al1—O5—C16179.1 (3)C10—C11—C12—C1317.6 (4)
O6—Al1—O5—C162.4 (3)C11—C12—C13—C1426.3 (5)
O3—Al1—O5—C1687.3 (3)C11—C10—C14—C1315.1 (4)
O1—Al1—O5—C1692.8 (3)C9—C10—C14—C13173.2 (4)
O2—Al1—O6—C18179.3 (3)C12—C13—C14—C1025.4 (5)
O5—Al1—O6—C181.2 (3)Al1—O5—C16—C175.4 (5)
O3—Al1—O6—C1891.6 (3)Al1—O5—C16—C15174.2 (3)
O1—Al1—O6—C1889.2 (3)O5—C16—C17—C184.6 (5)
Al1—O1—C2—C33.3 (5)C15—C16—C17—C18175.0 (3)
Al1—O1—C2—C1176.4 (2)O5—C16—C17—C21177.1 (3)
O1—C2—C3—C41.9 (5)C15—C16—C17—C213.3 (6)
C1—C2—C3—C4178.4 (3)Al1—O6—C18—C172.0 (5)
O1—C2—C3—C7179.2 (3)Al1—O6—C18—C19179.4 (3)
C1—C2—C3—C71.1 (5)C16—C17—C18—O60.8 (5)
Al1—O2—C4—C34.8 (5)C21—C17—C18—O6179.3 (3)
Al1—O2—C4—C5176.3 (2)C16—C17—C18—C19177.9 (3)
C2—C3—C4—O21.1 (5)C21—C17—C18—C190.6 (4)
C7—C3—C4—O2178.9 (3)O6—C18—C19—C20176.1 (4)
C2—C3—C4—C5177.9 (3)C17—C18—C19—C205.1 (5)
C7—C3—C4—C50.1 (4)C18—C19—C20—C217.8 (6)
O2—C4—C5—C6173.7 (3)C19—C20—C21—C177.5 (6)
C3—C4—C5—C67.2 (4)C16—C17—C21—C20177.1 (5)
C4—C5—C6—C711.3 (4)C18—C17—C21—C204.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O6i0.972.543.427 (4)153
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Al(C7H9O2)3]
Mr402.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1785 (3), 15.7494 (6), 15.6615 (5)
β (°) 94.039 (2)
V3)2012.29 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.25 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.967, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8554, 4523, 3007
Rint0.031
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.228, 1.03
No. of reflections4523
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.27

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O6i0.972.543.427 (4)153
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X–2000.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGaribay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378.  Web of Science CrossRef CAS Google Scholar
First citationHon, P. K. & Pfluger, C. E. (1973). J. Coord. Chem. 3, 67–76.  CrossRef CAS Google Scholar
First citationLutz, T. G., Clevette, D. J., Rettig, S. J. & Orvig, C. (1989). Inorg. Chem. 28, 715–719.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPerdih, F. (2011). Acta Cryst. E67, m1697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchröder, K., Join, B., Amali, A. J., Junge, K., Ribas, X., Costas, M. & Beller, M. (2011). Angew. Chem. Int. Ed. 50, 1425–1429.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sieler, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899–2903.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-B. & Wang, Q.-M. (2009). Angew. Chem. Int. Ed. 48, 7343–7345.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds