organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1871-o1872

(2E)-2-(5-Bromo-2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)-N-phenyl­hydrazine­carbo­thio­amide

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 3 May 2012; accepted 17 May 2012; online 23 May 2012)

The title compound, C15H14BrN3O2S, adopts an E,E conformation with respect to the azomethine and hydrazinic bonds and exists in the thio­amide form. The two rings in the mol­ecule are twisted away from each other, making a dihedral angle of 69.13 (13)°. In the crystal, mol­ecules are linked through pairs of N—H⋯O and O—H⋯S hydrogen bonds, leading to the formation of inversion dimers which are stacked along the a axis. Intra­molecular N—H⋯N, O—H⋯O and C—H⋯π inter­actions are also present.

Related literature

For applications of hydrazinecarbothio­amide and its derivatives, see: Barber et al. (1992[Barber, D. E., Lu, Z., Richardson, T. & Crabtree, R. H. (1992). Inorg. Chem. 31, 4709-4711.]); Parrilha et al. (2011[Parrilha, G. L., Da Silva, J. G., Gouveia, L. F., Gasparoto, A. K., Dias, R. P., Rocha, W. R., Santos, D. A., Speziali, N. L. & Beraldo, H. (2011). Eur. J. Med. Chem. 46, 1473-1482.]). For the synthesis, see: Joseph et al. (2006[Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61-70.]). For related structures, see: Dutta et al. (1997[Dutta, S. K., McConville, D. B., Youngs, W. J. & Chaudhury, M. (1997). Inorg. Chem. 36, 2517-2522.]); Seena et al. (2006[Seena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189-193.], 2008[Seena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93-96.]); Nisha et al. (2011[Nisha, K., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3420.]); Jacob & Kurup (2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]). For C=S and C=N double-bond lengths, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C15H14BrN3O2S

  • Mr = 380.26

  • Triclinic, [P \overline 1]

  • a = 6.1046 (5) Å

  • b = 11.0329 (8) Å

  • c = 12.4303 (9) Å

  • α = 101.175 (3)°

  • β = 91.323 (2)°

  • γ = 104.759 (2)°

  • V = 791.91 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.399, Tmax = 0.504

  • 11624 measured reflections

  • 2774 independent reflections

  • 2338 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.01

  • 2774 reflections

  • 212 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′⋯N1 0.83 (2) 2.25 (3) 2.654 (3) 110 (2)
N2—H2⋯O2i 0.84 (2) 2.23 (2) 2.983 (3) 149 (2)
O2—H2′⋯O1 0.82 (2) 2.20 (3) 2.631 (2) 113 (3)
O2—H2′⋯S1i 0.82 (2) 2.44 (2) 3.1547 (18) 146 (3)
C15—H15ACg2ii 0.96 2.90 3.649 (3) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The hydrazinecarbothioamides are envisaged as an important class of nitrogen-sulfur donor ligands because of their diverse chemical, biological and medicinal properties (Parrilha et al., 2011). The pharmacological activity of hydrazinecarbothioamides of o-hydroxyaromatic aldehydes is correlated to their ability to form chelates with biologically important metal ions by bonding through O, N and S atoms (Dutta et al., 1997).

The title compound adopts an E configuration with respect to the azomethine bond [N2—N1—C7—C6 = 174.8 (2)°] (Nisha et al., 2011). Also E configuration is perceived about C8—N2 bond (Fig. 1) similar to 5-bromo-3-methoxysalicylaldehyde-N(4)-cyclohexylthiosemicarbazone (Jacob & Kurup, 2012) but in contrast to 2-hydroxyacetophenone-N(4)-phenylthiosemicarbazone (Seena et al., 2006), where a Z configuration exists. This is confirmed by the N1—N2—C8—S1 torsion angle of 176.19 (18)°. Atom O1 lies cis to O2, with an O1—C4—C5—O2 torsion angle of -1.6 (3)° and atom N1 lies cis to N3, with an N1—N2—C8—N3 torsion angle of -5.9 (4)°. This favours the intramolecular hydrogen bonding interactions O2—H2'···O1 and N3—H3'···N1.

The C8—S1 bond distance [1.682 (2) Å] is closer to that expected for CS bond length [1.60 Å] (Allen et al., 1987) which confirms the existence of the compound in the thioamido form in solid state. Also the C7—N1 bond distance [1.270 (3) Å] is appreciably close to that of a CN double bond [1.28 Å] (Allen et al., 1987), confirming the azomethine bond formation.

The mean plane deviation calculations show that the molecule as a whole is non-planar. But the central hydrazinecarbothioamide group (C7/N1/N2/C8/S1/N3) is almost planar with a maximum deviation from the mean plane of 0.035 (2) Å for atom N2. This is similar to that observed in salicylaldehyde-N(4)-phenyl thiosemicarbazone (Seena et al., 2008). The planarity of hydrazinecarbothioamide moiety allows delocalization of the π electrons throughout the C7/N1/N2/C8/S1/N3 group. The ring Cg1iii (comprising of atoms C1—C6, with a maximum deviation of -0.011 (2) Å for C2) makes a dihedral angle of 14.80 (10)° with the hydrazinecarbothioamide moiety while the two rings in the molecule are twisted away from each other by a dihedral angle of 69.13 (13)° [symmetry code:(iii) 2 - x, 1 - y, 1 - z].

Fig. 2 shows the packing diagram of the title compound. The crystal packing involves two types of intramolecular hydrogen bonding interactions (Table 1), O2—H2'···O1 and N3—H3'···N1 leading to the formation of five membered rings comprising of atoms C4, C5, O2, H2' and O1 and N2, C8, N3, H3' and N1 respectively. The intermolecular hydrogen bonds N2—H2···O2i and O2—H2'···S1i cause the pairing of molecules leading to the formation of centrosymmetric dimers in the crystal lattice. These dimers are stacked along the a axis. Further stabilization is provided by non-classical C7—H7···O2 and C15—H15A···Cg2ii interactions.

Related literature top

For applications of hydrazinecarbothioamide and its derivatives, see: Barber et al. (1992); Parrilha et al. (2011). For the synthesis, see: Joseph et al. (2006). For related structures, see: Dutta et al. (1997); Seena et al. (2006, 2008); Nisha et al. (2011); Jacob & Kurup (2012). For CS and for CN double-bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by adapting a reported procedure (Joseph et al., 2006). To a methanolic (20 ml) solution of 4-phenylthiosemicarbazide (1 mmol, 0.1672 g), a methanolic (15 ml) solution of 5-bromo-3-methoxysalicylaldehyde (1 mmol, 0.2310 g) was added. The mixture was refluxed for 2 h in acid medium. After cooling, the compound formed was filtered off, washed with methanol and dried in vacuo. Yellow block shaped crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of its solution in 1:1 mixture of DMF and methanol over 3 days.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N2—H2, N3—H3' and O2—H2' H atoms were located from difference maps and restrained using DFIX instructions.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the unit cell along a axis.
(2E)-2-(5-Bromo-2-hydroxy-3-methoxybenzylidene)-N- phenylhydrazinecarbothioamide top
Crystal data top
C15H14BrN3O2SZ = 2
Mr = 380.26F(000) = 384.0
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1046 (5) ÅCell parameters from 4882 reflections
b = 11.0329 (8) Åθ = 2.8–25.9°
c = 12.4303 (9) ŵ = 2.74 mm1
α = 101.175 (3)°T = 296 K
β = 91.323 (2)°Block, yellow
γ = 104.759 (2)°0.35 × 0.30 × 0.25 mm
V = 791.91 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2774 independent reflections
Radiation source: fine-focus sealed tube2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω and ϕ scanh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1313
Tmin = 0.399, Tmax = 0.504l = 1414
11624 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.4209P]
where P = (Fo2 + 2Fc2)/3
2774 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.40 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
C15H14BrN3O2Sγ = 104.759 (2)°
Mr = 380.26V = 791.91 (10) Å3
Triclinic, P1Z = 2
a = 6.1046 (5) ÅMo Kα radiation
b = 11.0329 (8) ŵ = 2.74 mm1
c = 12.4303 (9) ÅT = 296 K
α = 101.175 (3)°0.35 × 0.30 × 0.25 mm
β = 91.323 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2774 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2338 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.504Rint = 0.039
11624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
2774 reflectionsΔρmin = 0.44 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.28630 (5)0.08118 (3)0.45166 (3)0.05852 (12)
S10.16123 (11)0.32832 (7)0.12714 (5)0.05073 (19)
O11.1158 (3)0.42448 (18)0.77355 (13)0.0518 (5)
O20.8043 (3)0.47160 (18)0.65009 (14)0.0457 (4)
N10.6514 (3)0.31281 (18)0.32779 (15)0.0366 (5)
N20.4670 (4)0.3403 (2)0.28201 (16)0.0416 (5)
N30.5318 (4)0.2386 (2)0.11374 (17)0.0454 (5)
C10.9885 (4)0.2399 (2)0.44657 (19)0.0373 (5)
H10.95940.20040.37260.045*
C21.1446 (4)0.2114 (2)0.5112 (2)0.0391 (6)
C31.1985 (4)0.2702 (2)0.6213 (2)0.0421 (6)
H31.30790.25030.66290.051*
C41.0856 (4)0.3588 (2)0.66732 (19)0.0380 (5)
C50.9203 (4)0.3875 (2)0.60356 (19)0.0347 (5)
C60.8726 (4)0.3296 (2)0.49340 (18)0.0330 (5)
C70.6955 (4)0.3582 (2)0.43026 (18)0.0364 (5)
H70.61190.41140.46600.044*
C80.3980 (4)0.2983 (2)0.17484 (19)0.0372 (5)
C90.4879 (4)0.1782 (2)0.00017 (19)0.0389 (6)
C100.2884 (5)0.0890 (3)0.0380 (2)0.0575 (8)
H100.17700.06830.01010.069*
C110.2513 (5)0.0295 (3)0.1473 (2)0.0637 (8)
H110.11330.02990.17280.076*
C120.4137 (5)0.0565 (3)0.2185 (2)0.0577 (8)
H120.38830.01550.29220.069*
C130.6148 (6)0.1446 (4)0.1802 (2)0.0722 (10)
H130.72740.16330.22820.087*
C140.6525 (5)0.2064 (3)0.0708 (2)0.0616 (8)
H140.78930.26690.04560.074*
C151.2722 (5)0.3963 (3)0.8467 (2)0.0618 (8)
H15A1.22410.30730.85000.093*
H15B1.27610.44770.91880.093*
H15C1.42110.41500.82030.093*
H3'0.653 (3)0.240 (3)0.146 (2)0.055 (8)*
H20.389 (4)0.380 (2)0.3232 (19)0.046 (8)*
H2'0.856 (5)0.507 (3)0.7130 (17)0.072 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0572 (2)0.05035 (17)0.0776 (2)0.03025 (13)0.01961 (15)0.01303 (14)
S10.0438 (4)0.0760 (5)0.0333 (3)0.0295 (3)0.0088 (3)0.0032 (3)
O10.0632 (12)0.0653 (12)0.0328 (9)0.0318 (9)0.0119 (8)0.0058 (9)
O20.0525 (11)0.0583 (11)0.0301 (9)0.0324 (9)0.0068 (8)0.0039 (8)
N10.0374 (11)0.0452 (11)0.0296 (11)0.0165 (9)0.0017 (8)0.0066 (9)
N20.0406 (12)0.0588 (13)0.0292 (11)0.0268 (10)0.0020 (9)0.0006 (10)
N30.0448 (13)0.0649 (14)0.0293 (11)0.0278 (11)0.0056 (10)0.0002 (10)
C10.0396 (14)0.0383 (13)0.0334 (13)0.0114 (10)0.0044 (11)0.0045 (11)
C20.0381 (13)0.0375 (13)0.0467 (15)0.0172 (10)0.0074 (11)0.0104 (11)
C30.0392 (14)0.0457 (14)0.0469 (15)0.0167 (11)0.0028 (11)0.0156 (12)
C40.0415 (14)0.0429 (13)0.0308 (13)0.0129 (11)0.0038 (10)0.0090 (11)
C50.0345 (13)0.0379 (12)0.0343 (13)0.0145 (10)0.0015 (10)0.0075 (10)
C60.0315 (12)0.0378 (12)0.0308 (12)0.0112 (10)0.0003 (10)0.0072 (10)
C70.0389 (13)0.0415 (13)0.0296 (12)0.0162 (10)0.0015 (10)0.0026 (10)
C80.0397 (14)0.0424 (13)0.0292 (12)0.0135 (11)0.0024 (10)0.0036 (10)
C90.0459 (15)0.0467 (14)0.0287 (12)0.0245 (12)0.0014 (11)0.0027 (11)
C100.0643 (19)0.0545 (17)0.0432 (16)0.0037 (14)0.0135 (14)0.0002 (14)
C110.066 (2)0.0541 (17)0.0534 (18)0.0012 (15)0.0036 (16)0.0103 (15)
C120.070 (2)0.0685 (19)0.0329 (14)0.0286 (16)0.0015 (14)0.0053 (13)
C130.059 (2)0.112 (3)0.0384 (16)0.0219 (19)0.0125 (14)0.0017 (17)
C140.0383 (15)0.092 (2)0.0448 (16)0.0143 (15)0.0023 (13)0.0035 (16)
C150.076 (2)0.0678 (19)0.0430 (16)0.0209 (16)0.0209 (15)0.0144 (14)
Geometric parameters (Å, º) top
Br1—C21.900 (2)C4—C51.404 (3)
S1—C81.682 (2)C5—C61.384 (3)
O1—C41.361 (3)C6—C71.454 (3)
O1—C151.434 (3)C7—H70.9300
O2—C51.358 (3)C9—C101.363 (4)
O2—H2'0.819 (18)C9—C141.369 (4)
N1—C71.270 (3)C10—C111.376 (4)
N1—N21.376 (3)C10—H100.9300
N2—C81.342 (3)C11—C121.359 (4)
N2—H20.843 (17)C11—H110.9300
N3—C81.337 (3)C12—C131.365 (4)
N3—C91.427 (3)C12—H120.9300
N3—H3'0.830 (17)C13—C141.383 (4)
C1—C21.366 (3)C13—H130.9300
C1—C61.404 (3)C14—H140.9300
C1—H10.9300C15—H15A0.9600
C2—C31.389 (3)C15—H15B0.9600
C3—C41.379 (3)C15—H15C0.9600
C3—H30.9300
C4—O1—C15117.7 (2)C6—C7—H7119.0
C5—O2—H2'112 (2)N3—C8—N2115.7 (2)
C7—N1—N2114.91 (19)N3—C8—S1125.34 (18)
C8—N2—N1122.0 (2)N2—C8—S1118.95 (18)
C8—N2—H2118.8 (18)C10—C9—C14119.4 (2)
N1—N2—H2119.1 (18)C10—C9—N3121.1 (2)
C8—N3—C9126.3 (2)C14—C9—N3119.4 (2)
C8—N3—H3'115 (2)C9—C10—C11120.3 (3)
C9—N3—H3'118 (2)C9—C10—H10119.9
C2—C1—C6119.1 (2)C11—C10—H10119.9
C2—C1—H1120.4C12—C11—C10120.8 (3)
C6—C1—H1120.4C12—C11—H11119.6
C1—C2—C3122.6 (2)C10—C11—H11119.6
C1—C2—Br1119.52 (18)C11—C12—C13119.0 (3)
C3—C2—Br1117.78 (17)C11—C12—H12120.5
C4—C3—C2118.3 (2)C13—C12—H12120.5
C4—C3—H3120.8C12—C13—C14120.6 (3)
C2—C3—H3120.8C12—C13—H13119.7
O1—C4—C3126.1 (2)C14—C13—H13119.7
O1—C4—C5113.7 (2)C9—C14—C13119.8 (3)
C3—C4—C5120.2 (2)C9—C14—H14120.1
O2—C5—C6119.51 (19)C13—C14—H14120.1
O2—C5—C4120.0 (2)O1—C15—H15A109.5
C6—C5—C4120.5 (2)O1—C15—H15B109.5
C5—C6—C1119.2 (2)H15A—C15—H15B109.5
C5—C6—C7119.2 (2)O1—C15—H15C109.5
C1—C6—C7121.5 (2)H15A—C15—H15C109.5
N1—C7—C6122.1 (2)H15B—C15—H15C109.5
N1—C7—H7119.0
C7—N1—N2—C8179.5 (2)C2—C1—C6—C7176.4 (2)
C6—C1—C2—C31.7 (4)N2—N1—C7—C6174.8 (2)
C6—C1—C2—Br1175.39 (17)C5—C6—C7—N1176.6 (2)
C1—C2—C3—C41.4 (4)C1—C6—C7—N16.6 (4)
Br1—C2—C3—C4175.76 (18)C9—N3—C8—N2175.5 (2)
C15—O1—C4—C32.7 (4)C9—N3—C8—S16.8 (4)
C15—O1—C4—C5176.6 (2)N1—N2—C8—N35.9 (4)
C2—C3—C4—O1179.5 (2)N1—N2—C8—S1176.19 (18)
C2—C3—C4—C50.2 (4)C8—N3—C9—C1052.8 (4)
O1—C4—C5—O21.6 (3)C8—N3—C9—C14129.9 (3)
C3—C4—C5—O2177.8 (2)C14—C9—C10—C111.2 (4)
O1—C4—C5—C6179.1 (2)N3—C9—C10—C11178.4 (3)
C3—C4—C5—C61.5 (4)C9—C10—C11—C121.4 (5)
O2—C5—C6—C1178.2 (2)C10—C11—C12—C130.5 (5)
C4—C5—C6—C11.2 (4)C11—C12—C13—C140.4 (5)
O2—C5—C6—C71.2 (3)C10—C9—C14—C130.2 (4)
C4—C5—C6—C7178.1 (2)N3—C9—C14—C13177.5 (3)
C2—C1—C6—C50.4 (3)C12—C13—C14—C90.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.83 (2)2.25 (3)2.654 (3)110 (2)
N2—H2···O2i0.84 (2)2.23 (2)2.983 (3)149 (2)
O2—H2···O10.82 (2)2.20 (3)2.631 (2)113 (3)
O2—H2···S1i0.82 (2)2.44 (2)3.1547 (18)146 (3)
C15—H15A···Cg2ii0.962.903.649 (3)135
C7—H7···O20.932.442.764 (3)101
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H14BrN3O2S
Mr380.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.1046 (5), 11.0329 (8), 12.4303 (9)
α, β, γ (°)101.175 (3), 91.323 (2), 104.759 (2)
V3)791.91 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.399, 0.504
No. of measured, independent and
observed [I > 2σ(I)] reflections
11624, 2774, 2338
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.01
No. of reflections2774
No. of parameters212
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.44

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3'···N10.830 (17)2.25 (3)2.654 (3)110 (2)
N2—H2···O2i0.843 (17)2.23 (2)2.983 (3)149 (2)
O2—H2'···O10.819 (18)2.20 (3)2.631 (2)113 (3)
O2—H2'···S1i0.819 (18)2.44 (2)3.1547 (18)146 (3)
C15—H15A···Cg2ii0.962.903.649 (3)135
C7—H7···O20.932.442.764 (3)101
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India for providing the single-crystal X-ray diffraction data. JMJ thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Senior Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarber, D. E., Lu, Z., Richardson, T. & Crabtree, R. H. (1992). Inorg. Chem. 31, 4709–4711.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutta, S. K., McConville, D. B., Youngs, W. J. & Chaudhury, M. (1997). Inorg. Chem. 36, 2517–2522.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationNisha, K., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParrilha, G. L., Da Silva, J. G., Gouveia, L. F., Gasparoto, A. K., Dias, R. P., Rocha, W. R., Santos, D. A., Speziali, N. L. & Beraldo, H. (2011). Eur. J. Med. Chem. 46, 1473–1482.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1871-o1872
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds