organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Cyclo­hexyl-3-fluoro­benzyl­­idene)chroman-4-one

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, and bSchool of Engineering, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: koorbanally@ukzn.ac.za

(Received 9 May 2012; accepted 28 May 2012; online 31 May 2012)

The title compound, C22H21FO2, exhibits substitutional disorder of the F atom and a H atom in the asymmetric unit with different occupancies, the refined F:H ratio being 0.80 (2):0.20 (2). The dihedral angle between the fluorinated benzene ring and the benzene ring of the chromanone system is 37.30°. There are two relatively high residual electron-density peaks associated with the disorder.

Related literature

For the preparation, see: Shaikh et al. (2011[Shaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). Struct. Chem. 22, 161-166.]). For related structures, see: Gopaul et al. (2012[Gopaul, K., Shaikh, M., Ramjugernath, D., Koorbanally, N. A. & Omondi, B. (2012). Acta Cryst. E68, o1006.]); Marx et al. (2008[Marx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Sridhar, B. (2008). Acta Cryst. E64, o328.]); Suresh et al. (2007[Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.]). For the biological activity of this class of compound, see: du Toit et al. (2010[Toit, K. du, Drewes, S. E. & Bodenstein, J. (2010). Nat. Prod. Res. 24, 457-490.]). This compound may undergo chemical conversion into the (E)- and (Z)-isomers, see: Kirkiacharian et al. (1984[Kirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106-108.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21FO2

  • Mr = 336.39

  • Triclinic, [P \overline 1]

  • a = 6.8351 (1) Å

  • b = 8.1483 (2) Å

  • c = 15.7931 (3) Å

  • α = 76.661 (1)°

  • β = 81.769 (1)°

  • γ = 75.287 (1)°

  • V = 824.45 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 446 K

  • 0.34 × 0.33 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.983

  • 18883 measured reflections

  • 4104 independent reflections

  • 3637 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.173

  • S = 1.05

  • 4104 reflections

  • 233 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, 3-(4-cyclohexyl-3-fluorobenzylidene)chroman-4-one, belongs to the homoisoflavonoid class of compounds, which are α,β unsaturated carbonyl compounds containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to isoflavonoids but differ by containing one more carbon atoms (Kirkiacharian et al., 1984). This compound may undergo chemical conversion into the (E)- and (Z)-isomers (Kirkiacharian et al., 1984). The 3-benzylidene-4-chromanones have been shown to display a wide range of biological activities (du Toit et al., 2010). The most commonly used procedure for the synthesis of homoisoflavonoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of an acidic or basic catalyst (Shaikh et al., 2011). We have recently been involved in the synthesis and characterization of fluorinated homoisoflavonoids in the search for lead pharmaceuticals (Gopaul et al., 2012).

In the molecular structure, the dihedral angle between the fluorinated benzene moiety and the benzene ring of the chromanone moiety is 37.30°. The cyclohexane moiety on the fluorinated benzene ring is attached to the least sterically hindered para-position of the phenyl ring and adopts a chair confirmation.

Related literature top

For the preparation, see: Shaikh et al. (2011). For related structures, see: Gopaul et al. (2012); Marx et al. (2008); Suresh et al. (2007). For the biological activity of this class of compound, see: du Toit et al. (2010). This compound may undergo chemical conversion into the (E)- and (Z)-isomers, see: Kirkiacharian et al. (1984).

Experimental top

A mixture of chroman-4-one (1.00 g, 6.749 mmol), 3,4-difluorobenzaldehyde (1.15 g, 8.099 mmol) and 10–15 drops of piperidine in cyclohexane was heated at 80°C for 24 hrs. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. The reaction mixture was extracted with ethyl acetate (3 × 30 ml). The ethyl acetate layers were combined, washed with brine (20 ml), water (2 × 10 ml) and dried over anhydrous magnesium sulfate. The solvent was reduced and the compound purified by column chromatography using silica gel (Merck 9385, 40–63 µm particle size) with a mobile phase of 2% ethyl acetate in hexane to yield the title compound.

1H NMR: δ (p.p.m.): 1.65 (7H, m, H-5''- H-11''), 3.12 (4H, m, H-1''- H-4''), 5.36 (2H, d, J=1.68 Hz, H-2), 7.06–6.92 (5H, m, H-2', H-5', H-6', H-6, H-8), 7.46 (1H, ddd, J=8.48, 6.96, 1.52 Hz, H-7), 7.74 (1H, s, H-9), 8.00 (1H, dd, J=7.84, 1.44 Hz, H-5). 13C NMR: δ (p.p.m.): 181.9, 160.9, 154.7 (J=246.6 Hz), 142.3 (J=8.24 Hz), 136.4 (J=1.94 Hz), 135.70, 129.2, 127.9, 127.3 (J=2.71 Hz), 122.1, 121.9, 118.7 (J=3.94 Hz), 117.83, 117.79 (J=22.02 Hz), 67.7, 51.5 (J=4.19 Hz), 25.9, 24.2.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The atoms F1a/F1b and H-8/H-13 are disordered and only F1a and H-8 are shown.
(E)-3-(4-Cyclohexyl-3-fluorobenzylidene)chroman-4-one top
Crystal data top
C22H21FO2Z = 2
Mr = 336.39F(000) = 356
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8351 (1) ÅCell parameters from 18935 reflections
b = 8.1483 (2) Åθ = 2.6–28.5°
c = 15.7931 (3) ŵ = 0.09 mm1
α = 76.661 (1)°T = 446 K
β = 81.769 (1)°Block, yellow
γ = 75.287 (1)°0.34 × 0.33 × 0.19 mm
V = 824.45 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.969, Tmax = 0.983k = 810
18883 measured reflectionsl = 2121
4104 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0944P)2 + 0.7446P]
where P = (Fo2 + 2Fc2)/3
4104 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.96 e Å3
21 restraintsΔρmin = 1.05 e Å3
Crystal data top
C22H21FO2γ = 75.287 (1)°
Mr = 336.39V = 824.45 (3) Å3
Triclinic, P1Z = 2
a = 6.8351 (1) ÅMo Kα radiation
b = 8.1483 (2) ŵ = 0.09 mm1
c = 15.7931 (3) ÅT = 446 K
α = 76.661 (1)°0.34 × 0.33 × 0.19 mm
β = 81.769 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3637 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.983Rint = 0.029
18883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05821 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.05Δρmax = 0.96 e Å3
4104 reflectionsΔρmin = 1.05 e Å3
233 parameters
Special details top

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.97 Å for Methylene H atoms, 0.98 Å for methine and 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Disorder: Disorder was found for the F– and H-atoms, which is not an uncommon situation. The disorder was modelled for F– and H– atoms (80:30) using PART instructions and the total occupancy at each atom site was kept as 1 during the refinement by means of a SUMFIX constraint. The F-atoms involved in disorder were modelled with anisotropic thermal parameters.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2972 (3)0.3337 (3)0.18026 (11)0.0240 (4)
H1A0.43750.26910.17750.029*
H1B0.2970.45580.17020.029*
C20.1930 (3)0.3034 (3)0.10912 (11)0.0256 (4)
H2A0.2150.17980.11260.031*
H2B0.25310.35320.05270.031*
C30.0336 (3)0.3826 (3)0.11618 (12)0.0269 (4)
H3A0.05660.50790.10010.032*
H3B0.09780.34430.07570.032*
C40.1284 (3)0.3313 (3)0.20779 (12)0.0276 (4)
H4A0.1290.20930.21930.033*
H4B0.26830.39640.21220.033*
C50.0171 (2)0.3636 (3)0.27620 (11)0.0252 (4)
H5A0.03370.48740.27040.03*
H5B0.07590.31860.33380.03*
C60.1987 (2)0.28131 (19)0.26771 (9)0.0131 (3)
H60.19780.16040.26960.016*
C70.3101 (2)0.2672 (2)0.33810 (10)0.0158 (3)
C80.2403 (2)0.3561 (2)0.40676 (10)0.0181 (3)
H80.11230.43060.40630.022*0.803 (4)
F1B0.0633 (2)0.4701 (2)0.41034 (10)0.0309 (17)0.197 (4)
C100.3560 (2)0.3365 (2)0.47542 (10)0.0178 (3)
H100.30380.39820.51950.021*
C110.5499 (2)0.22563 (19)0.47953 (10)0.0160 (3)
C120.6215 (2)0.13448 (19)0.41124 (10)0.0164 (3)
H120.74960.05990.41140.02*
C130.5036 (2)0.15504 (19)0.34448 (10)0.0161 (3)
H130.55450.09130.30110.019*0.197 (4)
F1A0.57542 (18)0.05863 (15)0.28206 (8)0.0190 (4)0.803 (4)
C140.6861 (2)0.1993 (2)0.54697 (10)0.0170 (3)
H140.82150.15220.53110.02*
C150.6495 (2)0.23152 (19)0.62847 (10)0.0159 (3)
C160.4451 (2)0.3066 (2)0.67092 (10)0.0183 (3)
H16A0.42370.43180.65820.022*
H16B0.34130.27790.64480.022*
C170.5798 (2)0.2205 (2)0.81068 (10)0.0180 (3)
C180.5371 (3)0.2086 (2)0.90100 (11)0.0231 (3)
H180.4040.21920.92610.028*
C190.6940 (3)0.1809 (2)0.95265 (11)0.0239 (4)
H190.66570.17281.01270.029*
C200.8948 (3)0.1650 (2)0.91576 (11)0.0223 (3)
H200.99910.14950.95080.027*
C210.9374 (2)0.1725 (2)0.82692 (11)0.0196 (3)
H211.07120.1590.80250.023*
C220.7803 (2)0.20013 (19)0.77313 (10)0.0165 (3)
C230.8274 (2)0.1979 (2)0.67917 (10)0.0180 (3)
O10.41878 (17)0.24763 (18)0.76439 (8)0.0230 (3)
O21.00278 (19)0.1688 (2)0.64622 (9)0.0303 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (8)0.0353 (9)0.0172 (7)0.0094 (7)0.0026 (6)0.0064 (6)
C20.0245 (8)0.0333 (9)0.0185 (8)0.0042 (7)0.0007 (6)0.0081 (7)
C30.0239 (8)0.0373 (10)0.0222 (8)0.0083 (7)0.0058 (6)0.0078 (7)
C40.0189 (8)0.0393 (10)0.0255 (9)0.0077 (7)0.0028 (6)0.0070 (7)
C50.0147 (7)0.0397 (10)0.0221 (8)0.0066 (6)0.0001 (6)0.0085 (7)
C60.0111 (6)0.0177 (7)0.0106 (6)0.0035 (5)0.0004 (5)0.0031 (5)
C70.0165 (7)0.0173 (7)0.0144 (6)0.0067 (5)0.0008 (5)0.0020 (5)
C80.0161 (7)0.0170 (7)0.0197 (7)0.0019 (5)0.0003 (5)0.0042 (6)
F1B0.023 (3)0.034 (3)0.032 (3)0.009 (2)0.007 (2)0.014 (2)
C100.0189 (7)0.0172 (7)0.0166 (7)0.0026 (6)0.0006 (5)0.0053 (5)
C110.0168 (7)0.0154 (7)0.0160 (7)0.0054 (5)0.0006 (5)0.0029 (5)
C120.0154 (7)0.0151 (7)0.0181 (7)0.0034 (5)0.0007 (5)0.0034 (5)
C130.0188 (7)0.0143 (7)0.0158 (7)0.0049 (5)0.0017 (5)0.0047 (5)
F1A0.0210 (6)0.0186 (6)0.0182 (6)0.0015 (4)0.0006 (4)0.0093 (4)
C140.0151 (7)0.0161 (7)0.0194 (7)0.0024 (5)0.0004 (5)0.0051 (5)
C150.0133 (6)0.0159 (7)0.0184 (7)0.0031 (5)0.0001 (5)0.0045 (5)
C160.0137 (7)0.0242 (8)0.0158 (7)0.0025 (6)0.0006 (5)0.0047 (6)
C170.0168 (7)0.0190 (7)0.0189 (7)0.0044 (5)0.0020 (6)0.0046 (6)
C180.0197 (7)0.0292 (9)0.0197 (8)0.0053 (6)0.0010 (6)0.0057 (6)
C190.0283 (9)0.0262 (8)0.0180 (7)0.0070 (7)0.0029 (6)0.0046 (6)
C200.0240 (8)0.0218 (8)0.0232 (8)0.0064 (6)0.0082 (6)0.0037 (6)
C210.0172 (7)0.0192 (7)0.0234 (8)0.0046 (6)0.0035 (6)0.0050 (6)
C220.0155 (7)0.0153 (7)0.0190 (7)0.0029 (5)0.0020 (5)0.0043 (5)
C230.0142 (7)0.0199 (7)0.0205 (7)0.0025 (5)0.0007 (5)0.0076 (6)
O10.0133 (5)0.0381 (7)0.0171 (6)0.0064 (5)0.0002 (4)0.0048 (5)
O20.0140 (6)0.0507 (9)0.0273 (7)0.0028 (5)0.0010 (5)0.0172 (6)
Geometric parameters (Å, º) top
C1—C61.467 (2)C11—C141.457 (2)
C1—C21.509 (2)C12—C131.372 (2)
C1—H1A0.97C12—H120.93
C1—H1B0.97C13—F1A1.3611 (18)
C2—C31.518 (2)C13—H130.93
C2—H2A0.97C14—C151.349 (2)
C2—H2B0.97C14—H140.93
C3—C41.509 (3)C15—C231.484 (2)
C3—H3A0.97C15—C161.504 (2)
C3—H3B0.97C16—O11.4433 (19)
C4—C51.511 (2)C16—H16A0.97
C4—H4A0.97C16—H16B0.97
C4—H4B0.97C17—O11.3517 (19)
C5—C61.458 (2)C17—C221.398 (2)
C5—H5A0.97C17—C181.400 (2)
C5—H5B0.97C18—C191.382 (2)
C6—C71.403 (2)C18—H180.93
C6—H60.98C19—C201.399 (3)
C7—C81.402 (2)C19—H190.93
C7—C131.406 (2)C20—C211.382 (2)
C8—F1B1.3282C20—H200.93
C8—C101.389 (2)C21—C221.405 (2)
C8—H80.93C21—H210.93
C10—C111.402 (2)C22—C231.476 (2)
C10—H100.93C23—O21.224 (2)
C11—C121.410 (2)
C6—C1—C2112.53 (14)C11—C10—H10119.4
C6—C1—H1A109.1C10—C11—C12117.11 (14)
C2—C1—H1A109.1C10—C11—C14125.82 (14)
C6—C1—H1B109.1C12—C11—C14117.04 (14)
C2—C1—H1B109.1C13—C12—C11120.46 (14)
H1A—C1—H1B107.8C13—C12—H12119.8
C1—C2—C3112.13 (14)C11—C12—H12119.8
C1—C2—H2A109.2F1A—C13—C12118.33 (14)
C3—C2—H2A109.2F1A—C13—C7118.06 (14)
C1—C2—H2B109.2C12—C13—C7123.59 (14)
C3—C2—H2B109.2C12—C13—H13118.2
H2A—C2—H2B107.9C7—C13—H13118.2
C4—C3—C2111.15 (15)C15—C14—C11131.10 (14)
C4—C3—H3A109.4C15—C14—H14114.5
C2—C3—H3A109.4C11—C14—H14114.5
C4—C3—H3B109.4C14—C15—C23117.23 (14)
C2—C3—H3B109.4C14—C15—C16125.62 (14)
H3A—C3—H3B108C23—C15—C16117.08 (13)
C3—C4—C5112.63 (15)O1—C16—C15114.82 (13)
C3—C4—H4A109.1O1—C16—H16A108.6
C5—C4—H4A109.1C15—C16—H16A108.6
C3—C4—H4B109.1O1—C16—H16B108.6
C5—C4—H4B109.1C15—C16—H16B108.6
H4A—C4—H4B107.8H16A—C16—H16B107.5
C6—C5—C4111.53 (15)O1—C17—C22123.41 (14)
C6—C5—H5A109.3O1—C17—C18116.25 (14)
C4—C5—H5A109.3C22—C17—C18120.32 (15)
C6—C5—H5B109.3C19—C18—C17119.57 (15)
C4—C5—H5B109.3C19—C18—H18120.2
H5A—C5—H5B108C17—C18—H18120.2
C7—C6—C5117.07 (13)C18—C19—C20120.78 (16)
C7—C6—C1116.12 (13)C18—C19—H19119.6
C5—C6—C1112.93 (13)C20—C19—H19119.6
C7—C6—H6102.6C21—C20—C19119.60 (15)
C5—C6—H6102.6C21—C20—H20120.2
C1—C6—H6102.6C19—C20—H20120.2
C8—C7—C6124.42 (14)C20—C21—C22120.61 (15)
C8—C7—C13115.31 (14)C20—C21—H21119.7
C6—C7—C13120.25 (14)C22—C21—H21119.7
F1B—C8—C10114.28 (9)C17—C22—C21119.08 (14)
F1B—C8—C7123.45 (9)C17—C22—C23120.42 (14)
C10—C8—C7122.22 (14)C21—C22—C23120.41 (14)
C10—C8—H8118.9O2—C23—C22121.42 (15)
C7—C8—H8118.9O2—C23—C15122.84 (15)
C8—C10—C11121.29 (14)C22—C23—C15115.73 (13)
C8—C10—H10119.4C17—O1—C16118.16 (12)
C6—C1—C2—C351.8 (2)C10—C11—C14—C1519.5 (3)
C1—C2—C3—C449.7 (2)C12—C11—C14—C15162.10 (17)
C2—C3—C4—C550.9 (2)C11—C14—C15—C23176.66 (15)
C3—C4—C5—C653.7 (2)C11—C14—C15—C160.3 (3)
C4—C5—C6—C7165.85 (15)C14—C15—C16—O1148.36 (16)
C4—C5—C6—C155.3 (2)C23—C15—C16—O134.7 (2)
C2—C1—C6—C7165.83 (15)O1—C17—C18—C19179.99 (15)
C2—C1—C6—C554.9 (2)C22—C17—C18—C191.7 (3)
C5—C6—C7—C813.6 (2)C17—C18—C19—C200.1 (3)
C1—C6—C7—C8123.94 (17)C18—C19—C20—C211.7 (3)
C5—C6—C7—C13164.76 (15)C19—C20—C21—C221.6 (2)
C1—C6—C7—C1357.7 (2)O1—C17—C22—C21179.98 (14)
C6—C7—C8—F1B3.22 (19)C18—C17—C22—C211.8 (2)
C13—C7—C8—F1B178.34 (9)O1—C17—C22—C233.4 (2)
C6—C7—C8—C10179.45 (15)C18—C17—C22—C23174.79 (15)
C13—C7—C8—C101.0 (2)C20—C21—C22—C170.2 (2)
F1B—C8—C10—C11177.69 (11)C20—C21—C22—C23176.43 (15)
C7—C8—C10—C110.1 (2)C17—C22—C23—O2175.13 (16)
C8—C10—C11—C120.3 (2)C21—C22—C23—O21.4 (2)
C8—C10—C11—C14178.12 (14)C17—C22—C23—C154.4 (2)
C10—C11—C12—C130.2 (2)C21—C22—C23—C15179.02 (14)
C14—C11—C12—C13178.77 (14)C14—C15—C23—O211.4 (2)
C11—C12—C13—F1A177.15 (13)C16—C15—C23—O2165.74 (16)
C11—C12—C13—C71.2 (2)C14—C15—C23—C22168.11 (14)
C8—C7—C13—F1A176.79 (13)C16—C15—C23—C2214.7 (2)
C6—C7—C13—F1A1.7 (2)C22—C17—O1—C1618.0 (2)
C8—C7—C13—C121.6 (2)C18—C17—O1—C16163.70 (15)
C6—C7—C13—C12179.93 (14)C15—C16—O1—C1736.5 (2)

Experimental details

Crystal data
Chemical formulaC22H21FO2
Mr336.39
Crystal system, space groupTriclinic, P1
Temperature (K)446
a, b, c (Å)6.8351 (1), 8.1483 (2), 15.7931 (3)
α, β, γ (°)76.661 (1), 81.769 (1), 75.287 (1)
V3)824.45 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.33 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.969, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
18883, 4104, 3637
Rint0.029
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.173, 1.05
No. of reflections4104
No. of parameters233
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 1.05

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support and Dr B. Owaga for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGopaul, K., Shaikh, M., Ramjugernath, D., Koorbanally, N. A. & Omondi, B. (2012). Acta Cryst. E68, o1006.  CSD CrossRef IUCr Journals Google Scholar
First citationKirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106–108.  CrossRef CAS Web of Science Google Scholar
First citationMarx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Sridhar, B. (2008). Acta Cryst. E64, o328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). Struct. Chem. 22, 161–166.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationToit, K. du, Drewes, S. E. & Bodenstein, J. (2010). Nat. Prod. Res. 24, 457–490.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds