organic compounds
2,4-Dibromo-2,3-dihydro-1H-inden-1-yl acetate
aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Art and Science, Sakarya University, 54187 Adapazarı, Turkey, dDepartment of Chemistry, Faculty of Art and Science, Gaziosmanpaşa University, 60240 Tokat, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C11H10Br2O2, the cyclopentene ring fused to the benzene ring adopts an with the C atom attached to the Br atom as the flap. The does not exhibit any classical hydrogen bonds. The molecular packing is stabilized by and π–π stacking interactions with a centroid–centroid distance of 3.811 (4) Å.
Related literature
For bromination of hydrocarbons, see: Catto et al. (2010); Erenler & Çakmak (2004); Erenler et al. (2006); McClure et al. (2011); Mitrochkine et al. (1995); Snyder & Brill (2011); Wu (2006); Çakmak et al. (2006). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812023173/fj2559sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023173/fj2559Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812023173/fj2559Isup3.cml
To a cooled solution (273 K) of 2,4-dibromo-1-hyodroxyindane (0.2 g, 0.68 mmol) in pyridine (6.0 ml) was added acetic anhydride (1.0 ml) dropwise. After completion of the reaction for 4 h at room temperature, the solvent was removed under reduced pressure to form the solid product which was crystalized from dichloromethane/hexane to yield the 1-acetate-2,4-dibromo-indane (0.21 g, 95%). 1H-NMR (300 MHz, CDCl3) δ 7.40–7.60 (m, 3H), 6.0 (d, 1H), 4.90 (dt, 1H), 3.50 (m, 2H), 2.20 (s, 3H).
The hydrogen atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Eight poorly fitted reflections (0 1 0), (-2 0 2), (2 - 1 4), (-5 - 8 2), (3 - 1 3), (1 - 1 4), (0 2 1) and (-1 0 2) were omitted from the
The highest residual peak and the deepest hole are located 0.93 and 0.89 Å, respectively, from atom Br2.Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C11H10Br2O2 | Z = 2 |
Mr = 333.99 | F(000) = 324 |
Triclinic, P1 | Dx = 1.934 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1423 (7) Å | Cell parameters from 9714 reflections |
b = 8.6891 (9) Å | θ = 2.4–28.1° |
c = 9.0028 (8) Å | µ = 7.04 mm−1 |
α = 76.163 (8)° | T = 296 K |
β = 68.105 (7)° | Prism, colourless |
γ = 86.397 (8)° | 0.43 × 0.35 × 0.28 mm |
V = 573.60 (10) Å3 |
Stoe IPDS 2 diffractometer | 2635 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1958 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.110 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
ω scans | h = −10→10 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −11→10 |
Tmin = 0.152, Tmax = 0.243 | l = −11→11 |
6542 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.1053P)2] where P = (Fo2 + 2Fc2)/3 |
2635 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 1.20 e Å−3 |
0 restraints | Δρmin = −1.42 e Å−3 |
C11H10Br2O2 | γ = 86.397 (8)° |
Mr = 333.99 | V = 573.60 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1423 (7) Å | Mo Kα radiation |
b = 8.6891 (9) Å | µ = 7.04 mm−1 |
c = 9.0028 (8) Å | T = 296 K |
α = 76.163 (8)° | 0.43 × 0.35 × 0.28 mm |
β = 68.105 (7)° |
Stoe IPDS 2 diffractometer | 2635 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 1958 reflections with I > 2σ(I) |
Tmin = 0.152, Tmax = 0.243 | Rint = 0.110 |
6542 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.20 e Å−3 |
2635 reflections | Δρmin = −1.42 e Å−3 |
137 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.22277 (8) | 0.18390 (9) | 1.10206 (9) | 0.0641 (3) | |
Br2 | 0.91526 (9) | 0.24936 (9) | 0.49626 (8) | 0.0579 (3) | |
O1 | 0.9902 (5) | 0.1989 (5) | 0.8133 (5) | 0.0464 (11) | |
O2 | 1.2454 (6) | 0.3332 (6) | 0.6377 (6) | 0.0625 (16) | |
C1 | 0.7425 (7) | 0.3340 (6) | 0.9593 (7) | 0.0433 (17) | |
C2 | 0.7505 (8) | 0.3703 (7) | 1.0998 (8) | 0.0495 (17) | |
C3 | 0.6006 (10) | 0.3485 (8) | 1.2402 (8) | 0.0549 (19) | |
C4 | 0.4421 (9) | 0.2927 (8) | 1.2408 (8) | 0.0527 (19) | |
C5 | 0.4366 (8) | 0.2609 (7) | 1.1011 (8) | 0.0497 (17) | |
C6 | 0.5867 (7) | 0.2826 (7) | 0.9560 (7) | 0.0438 (17) | |
C7 | 0.6106 (7) | 0.2538 (7) | 0.7923 (7) | 0.0472 (17) | |
C8 | 0.7877 (7) | 0.3406 (7) | 0.6838 (7) | 0.0446 (17) | |
C9 | 0.8911 (7) | 0.3415 (6) | 0.7950 (7) | 0.0425 (14) | |
C10 | 1.1652 (8) | 0.2097 (8) | 0.7179 (8) | 0.0488 (17) | |
C11 | 1.2441 (10) | 0.0501 (9) | 0.7271 (11) | 0.065 (3) | |
H2 | 0.85540 | 0.40870 | 1.09820 | 0.0590* | |
H3 | 0.60410 | 0.37060 | 1.33510 | 0.0660* | |
H4 | 0.34100 | 0.27740 | 1.33620 | 0.0630* | |
H7A | 0.51600 | 0.29880 | 0.75610 | 0.0570* | |
H7B | 0.61690 | 0.14150 | 0.79440 | 0.0570* | |
H8 | 0.76310 | 0.45080 | 0.64130 | 0.0530* | |
H9 | 0.96600 | 0.43760 | 0.75890 | 0.0510* | |
H11A | 1.18960 | −0.01350 | 0.68340 | 0.0970* | |
H11B | 1.22470 | −0.00010 | 0.83970 | 0.0970* | |
H11C | 1.36900 | 0.06100 | 0.66390 | 0.0970* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0461 (4) | 0.0769 (5) | 0.0653 (5) | −0.0077 (3) | −0.0103 (3) | −0.0237 (4) |
Br2 | 0.0559 (4) | 0.0717 (5) | 0.0471 (4) | 0.0049 (3) | −0.0153 (3) | −0.0228 (3) |
O1 | 0.045 (2) | 0.0381 (19) | 0.056 (2) | 0.0031 (15) | −0.0190 (17) | −0.0109 (17) |
O2 | 0.051 (2) | 0.061 (3) | 0.067 (3) | −0.006 (2) | −0.014 (2) | −0.010 (2) |
C1 | 0.048 (3) | 0.036 (3) | 0.046 (3) | 0.001 (2) | −0.016 (2) | −0.012 (2) |
C2 | 0.054 (3) | 0.042 (3) | 0.059 (3) | 0.001 (2) | −0.026 (3) | −0.015 (3) |
C3 | 0.070 (4) | 0.051 (3) | 0.053 (3) | 0.013 (3) | −0.029 (3) | −0.022 (3) |
C4 | 0.061 (4) | 0.051 (3) | 0.043 (3) | 0.012 (3) | −0.015 (3) | −0.015 (3) |
C5 | 0.051 (3) | 0.043 (3) | 0.052 (3) | 0.008 (2) | −0.016 (2) | −0.012 (2) |
C6 | 0.046 (3) | 0.043 (3) | 0.043 (3) | 0.006 (2) | −0.018 (2) | −0.010 (2) |
C7 | 0.040 (3) | 0.052 (3) | 0.049 (3) | −0.002 (2) | −0.014 (2) | −0.014 (3) |
C8 | 0.046 (3) | 0.045 (3) | 0.045 (3) | 0.005 (2) | −0.019 (2) | −0.012 (2) |
C9 | 0.040 (2) | 0.033 (2) | 0.053 (3) | 0.0027 (19) | −0.017 (2) | −0.008 (2) |
C10 | 0.042 (3) | 0.056 (3) | 0.055 (3) | 0.007 (2) | −0.022 (2) | −0.020 (3) |
C11 | 0.062 (4) | 0.058 (4) | 0.086 (5) | 0.012 (3) | −0.031 (4) | −0.034 (4) |
Br1—C5 | 1.900 (7) | C7—C8 | 1.528 (9) |
Br2—C8 | 1.946 (6) | C8—C9 | 1.531 (8) |
O1—C9 | 1.446 (7) | C10—C11 | 1.489 (11) |
O1—C10 | 1.357 (8) | C2—H2 | 0.9300 |
O2—C10 | 1.210 (9) | C3—H3 | 0.9300 |
C1—C2 | 1.400 (9) | C4—H4 | 0.9300 |
C1—C6 | 1.384 (9) | C7—H7A | 0.9700 |
C1—C9 | 1.512 (8) | C7—H7B | 0.9700 |
C2—C3 | 1.374 (10) | C8—H8 | 0.9800 |
C3—C4 | 1.405 (11) | C9—H9 | 0.9800 |
C4—C5 | 1.368 (9) | C11—H11A | 0.9600 |
C5—C6 | 1.399 (9) | C11—H11B | 0.9600 |
C6—C7 | 1.493 (8) | C11—H11C | 0.9600 |
C9—O1—C10 | 116.4 (5) | C1—C2—H2 | 121.00 |
C2—C1—C6 | 121.9 (6) | C3—C2—H2 | 121.00 |
C2—C1—C9 | 128.1 (6) | C2—C3—H3 | 120.00 |
C6—C1—C9 | 110.0 (5) | C4—C3—H3 | 120.00 |
C1—C2—C3 | 118.9 (6) | C3—C4—H4 | 120.00 |
C2—C3—C4 | 120.1 (6) | C5—C4—H4 | 120.00 |
C3—C4—C5 | 120.0 (6) | C6—C7—H7A | 112.00 |
Br1—C5—C4 | 120.1 (5) | C6—C7—H7B | 111.00 |
Br1—C5—C6 | 118.7 (5) | C8—C7—H7A | 112.00 |
C4—C5—C6 | 121.3 (6) | C8—C7—H7B | 112.00 |
C1—C6—C5 | 117.8 (6) | H7A—C7—H7B | 109.00 |
C1—C6—C7 | 112.1 (5) | Br2—C8—H8 | 108.00 |
C5—C6—C7 | 130.1 (6) | C7—C8—H8 | 108.00 |
C6—C7—C8 | 101.3 (5) | C9—C8—H8 | 108.00 |
Br2—C8—C7 | 112.1 (4) | O1—C9—H9 | 112.00 |
Br2—C8—C9 | 113.7 (4) | C1—C9—H9 | 112.00 |
C7—C8—C9 | 107.2 (5) | C8—C9—H9 | 112.00 |
O1—C9—C1 | 106.8 (4) | C10—C11—H11A | 109.00 |
O1—C9—C8 | 111.9 (5) | C10—C11—H11B | 109.00 |
C1—C9—C8 | 101.4 (5) | C10—C11—H11C | 109.00 |
O1—C10—O2 | 124.1 (6) | H11A—C11—H11B | 109.00 |
O1—C10—C11 | 110.8 (6) | H11A—C11—H11C | 109.00 |
O2—C10—C11 | 125.0 (7) | H11B—C11—H11C | 109.00 |
C9—O1—C10—C11 | −170.2 (6) | C2—C3—C4—C5 | −0.4 (11) |
C10—O1—C9—C1 | −150.4 (5) | C3—C4—C5—C6 | 0.1 (10) |
C10—O1—C9—C8 | 99.5 (6) | C3—C4—C5—Br1 | 179.5 (5) |
C9—O1—C10—O2 | 10.3 (9) | Br1—C5—C6—C7 | −0.3 (9) |
C9—C1—C2—C3 | −177.0 (6) | C4—C5—C6—C1 | 1.4 (9) |
C2—C1—C6—C5 | −2.7 (9) | C4—C5—C6—C7 | 179.2 (6) |
C2—C1—C6—C7 | 179.2 (5) | Br1—C5—C6—C1 | −178.0 (4) |
C6—C1—C2—C3 | 2.5 (9) | C1—C6—C7—C8 | −15.9 (7) |
C6—C1—C9—O1 | −99.5 (6) | C5—C6—C7—C8 | 166.3 (6) |
C6—C1—C9—C8 | 17.8 (6) | C6—C7—C8—Br2 | 152.3 (4) |
C2—C1—C9—O1 | 80.1 (7) | C6—C7—C8—C9 | 26.7 (6) |
C9—C1—C6—C5 | 176.8 (5) | Br2—C8—C9—C1 | −152.1 (4) |
C9—C1—C6—C7 | −1.3 (7) | C7—C8—C9—O1 | 86.0 (6) |
C2—C1—C9—C8 | −162.7 (6) | C7—C8—C9—C1 | −27.5 (6) |
C1—C2—C3—C4 | −0.8 (10) | Br2—C8—C9—O1 | −38.6 (6) |
Experimental details
Crystal data | |
Chemical formula | C11H10Br2O2 |
Mr | 333.99 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.1423 (7), 8.6891 (9), 9.0028 (8) |
α, β, γ (°) | 76.163 (8), 68.105 (7), 86.397 (8) |
V (Å3) | 573.60 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.04 |
Crystal size (mm) | 0.43 × 0.35 × 0.28 |
Data collection | |
Diffractometer | Stoe IPDS 2 diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.152, 0.243 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6542, 2635, 1958 |
Rint | 0.110 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.178, 1.02 |
No. of reflections | 2635 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.20, −1.42 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Çakmak, O., Erenler, R., Tutar, A. & Çelik, N. (2006). J. Org. Chem. 71, 1795–1801. Web of Science PubMed Google Scholar
Catto, M., Aliano, R., Carotti, A., Cellamare, S., Palluotto, F., Purgatorio, R., Stradis, A. D. & Campagna, F. (2010). Eur. J. Med. Chem. 45, 1359–1366. Web of Science CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Erenler, R. & Çakmak, O. (2004). J. Chem. Res. pp. 566–569. CrossRef Google Scholar
Erenler, R., Demirtaş, İ., Büyükkıdan, B. & Çakmak, O. (2006). J. Chem. Res. pp. 753–757. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
McClure, K. J., Maher, M., Wu, N., Chaplan, S. R., Erkert, W. A., Lee, D. H., Wickenden, A. D., Hermann, M., Allison, B., Hawryluk, N., Breitenbucher, G. J. & Grice, C. A. (2011). Bioorg. Med. Chem. Lett. 21, 5197–5201. Web of Science CrossRef CAS PubMed Google Scholar
Mitrochkine, A., Eydoux, F., Martres, M., Gil, G., Heumann, A. & Reglier, M. (1995). Tetrahedron Asymmetry, 6, 59–62. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Snyder, S. A. & Brill, Z. G. (2011). Org. Lett. 13, 5524–5527. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wu, Y. J. (2006). Tetrahedron Lett. 47, 8459–8461. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Brominations of hydrocarbons are important processes in synthetic chemistry (Çakmak et al., 2006; Erenler et al., 2006; Erenler & Çakmak, 2004). Indanes are important class of molecules due to the pharmacological and medicinal properties (Mitrochkine et al., 1995; Catto et al., 2010; Wu, 2006; McClure et al., 2011) as well as natural product chemistry (Snyder & Brill, 2011).
The five-membered C1C6–C9 cyclopentene ring in the title compound, (Fig. 1), exhibits an envelope-shaped conformation, with the C8 atom attached to Br2 atom at the flap [the puckering parameters (Cremer & Pople, 1975) Q(2) = 0.279 (7) Å, ϕ(2) = 290.5 (13) °]. The Br1–C5–C6–C1, Br2–C8–C9–C1, C9–O1–C10–C11 and C9–O1–C10–O2 torsion angles are -178.0 (4), -152.1 (4), -170.2 (6) and 10.3 (9) °, respectively.
In the crystal, there is no classic hydrogen bonds. The crystal structure is stabilized by van der Waals forces and π-π stacking interactions [Cg2···Cg2(1 - x, 1 - y, 2 - z) = 3.811 (4) Å] between the centroids (Cg2) of the benzene rings of the adjacent molecules. Fig. 2 shows the molecular packing of the title compound along the b axis.