organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo-2,3-di­hydro-1H-inden-1-yl acetate

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Art and Science, Sakarya University, 54187 Adapazarı, Turkey, dDepartment of Chemistry, Faculty of Art and Science, Gaziosmanpaşa University, 60240 Tokat, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 16 May 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, C11H10Br2O2, the cyclo­pentene ring fused to the benzene ring adopts an envelope conformation, with the C atom attached to the Br atom as the flap. The crystal structure does not exhibit any classical hydrogen bonds. The mol­ecular packing is stabilized by van der Waals forces and ππ stacking inter­actions with a centroid–centroid distance of 3.811 (4) Å.

Related literature

For bromination of hydro­carbons, see: Catto et al. (2010[Catto, M., Aliano, R., Carotti, A., Cellamare, S., Palluotto, F., Purgatorio, R., Stradis, A. D. & Campagna, F. (2010). Eur. J. Med. Chem. 45, 1359-1366.]); Erenler & Çakmak (2004[Erenler, R. & Çakmak, O. (2004). J. Chem. Res. pp. 566-569.]); Erenler et al. (2006[Erenler, R., Demirtaş, İ., Büyükkıdan, B. & Çakmak, O. (2006). J. Chem. Res. pp. 753-757.]); McClure et al. (2011[McClure, K. J., Maher, M., Wu, N., Chaplan, S. R., Erkert, W. A., Lee, D. H., Wickenden, A. D., Hermann, M., Allison, B., Hawryluk, N., Breitenbucher, G. J. & Grice, C. A. (2011). Bioorg. Med. Chem. Lett. 21, 5197-5201.]); Mitrochkine et al. (1995[Mitrochkine, A., Eydoux, F., Martres, M., Gil, G., Heumann, A. & Reglier, M. (1995). Tetrahedron Asymmetry, 6, 59-62.]); Snyder & Brill (2011[Snyder, S. A. & Brill, Z. G. (2011). Org. Lett. 13, 5524-5527.]); Wu (2006[Wu, Y. J. (2006). Tetrahedron Lett. 47, 8459-8461.]); Çakmak et al. (2006[Çakmak, O., Erenler, R., Tutar, A. & Çelik, N. (2006). J. Org. Chem. 71, 1795-1801.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10Br2O2

  • Mr = 333.99

  • Triclinic, [P \overline 1]

  • a = 8.1423 (7) Å

  • b = 8.6891 (9) Å

  • c = 9.0028 (8) Å

  • α = 76.163 (8)°

  • β = 68.105 (7)°

  • γ = 86.397 (8)°

  • V = 573.60 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.04 mm−1

  • T = 296 K

  • 0.43 × 0.35 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.152, Tmax = 0.243

  • 6542 measured reflections

  • 2635 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.178

  • S = 1.02

  • 2635 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.42 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Brominations of hydrocarbons are important processes in synthetic chemistry (Çakmak et al., 2006; Erenler et al., 2006; Erenler & Çakmak, 2004). Indanes are important class of molecules due to the pharmacological and medicinal properties (Mitrochkine et al., 1995; Catto et al., 2010; Wu, 2006; McClure et al., 2011) as well as natural product chemistry (Snyder & Brill, 2011).

The five-membered C1C6–C9 cyclopentene ring in the title compound, (Fig. 1), exhibits an envelope-shaped conformation, with the C8 atom attached to Br2 atom at the flap [the puckering parameters (Cremer & Pople, 1975) Q(2) = 0.279 (7) Å, ϕ(2) = 290.5 (13) °]. The Br1–C5–C6–C1, Br2–C8–C9–C1, C9–O1–C10–C11 and C9–O1–C10–O2 torsion angles are -178.0 (4), -152.1 (4), -170.2 (6) and 10.3 (9) °, respectively.

In the crystal, there is no classic hydrogen bonds. The crystal structure is stabilized by van der Waals forces and π-π stacking interactions [Cg2···Cg2(1 - x, 1 - y, 2 - z) = 3.811 (4) Å] between the centroids (Cg2) of the benzene rings of the adjacent molecules. Fig. 2 shows the molecular packing of the title compound along the b axis.

Related literature top

For bromination of hydrocarbons, see: Catto et al. (2010); Erenler & Çakmak (2004); Erenler et al. (2006); McClure et al. (2011); Mitrochkine et al. (1995); Snyder & Brill (2011); Wu (2006); Çakmak et al. (2006). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a cooled solution (273 K) of 2,4-dibromo-1-hyodroxyindane (0.2 g, 0.68 mmol) in pyridine (6.0 ml) was added acetic anhydride (1.0 ml) dropwise. After completion of the reaction for 4 h at room temperature, the solvent was removed under reduced pressure to form the solid product which was crystalized from dichloromethane/hexane to yield the 1-acetate-2,4-dibromo-indane (0.21 g, 95%). 1H-NMR (300 MHz, CDCl3) δ 7.40–7.60 (m, 3H), 6.0 (d, 1H), 4.90 (dt, 1H), 3.50 (m, 2H), 2.20 (s, 3H).

Refinement top

The hydrogen atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Eight poorly fitted reflections (0 1 0), (-2 0 2), (2 - 1 4), (-5 - 8 2), (3 - 1 3), (1 - 1 4), (0 2 1) and (-1 0 2) were omitted from the refinement. The highest residual peak and the deepest hole are located 0.93 and 0.89 Å, respectively, from atom Br2.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing of the title compound, along the b axis. H atoms are omitted for the sake of clarity.
2,4-Dibromo-2,3-dihydro-1H-inden-1-yl acetate top
Crystal data top
C11H10Br2O2Z = 2
Mr = 333.99F(000) = 324
Triclinic, P1Dx = 1.934 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1423 (7) ÅCell parameters from 9714 reflections
b = 8.6891 (9) Åθ = 2.4–28.1°
c = 9.0028 (8) ŵ = 7.04 mm1
α = 76.163 (8)°T = 296 K
β = 68.105 (7)°Prism, colourless
γ = 86.397 (8)°0.43 × 0.35 × 0.28 mm
V = 573.60 (10) Å3
Data collection top
Stoe IPDS 2
diffractometer
2635 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1958 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.110
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1110
Tmin = 0.152, Tmax = 0.243l = 1111
6542 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1053P)2]
where P = (Fo2 + 2Fc2)/3
2635 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 1.42 e Å3
Crystal data top
C11H10Br2O2γ = 86.397 (8)°
Mr = 333.99V = 573.60 (10) Å3
Triclinic, P1Z = 2
a = 8.1423 (7) ÅMo Kα radiation
b = 8.6891 (9) ŵ = 7.04 mm1
c = 9.0028 (8) ÅT = 296 K
α = 76.163 (8)°0.43 × 0.35 × 0.28 mm
β = 68.105 (7)°
Data collection top
Stoe IPDS 2
diffractometer
2635 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1958 reflections with I > 2σ(I)
Tmin = 0.152, Tmax = 0.243Rint = 0.110
6542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.02Δρmax = 1.20 e Å3
2635 reflectionsΔρmin = 1.42 e Å3
137 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22277 (8)0.18390 (9)1.10206 (9)0.0641 (3)
Br20.91526 (9)0.24936 (9)0.49626 (8)0.0579 (3)
O10.9902 (5)0.1989 (5)0.8133 (5)0.0464 (11)
O21.2454 (6)0.3332 (6)0.6377 (6)0.0625 (16)
C10.7425 (7)0.3340 (6)0.9593 (7)0.0433 (17)
C20.7505 (8)0.3703 (7)1.0998 (8)0.0495 (17)
C30.6006 (10)0.3485 (8)1.2402 (8)0.0549 (19)
C40.4421 (9)0.2927 (8)1.2408 (8)0.0527 (19)
C50.4366 (8)0.2609 (7)1.1011 (8)0.0497 (17)
C60.5867 (7)0.2826 (7)0.9560 (7)0.0438 (17)
C70.6106 (7)0.2538 (7)0.7923 (7)0.0472 (17)
C80.7877 (7)0.3406 (7)0.6838 (7)0.0446 (17)
C90.8911 (7)0.3415 (6)0.7950 (7)0.0425 (14)
C101.1652 (8)0.2097 (8)0.7179 (8)0.0488 (17)
C111.2441 (10)0.0501 (9)0.7271 (11)0.065 (3)
H20.855400.408701.098200.0590*
H30.604100.370601.335100.0660*
H40.341000.277401.336200.0630*
H7A0.516000.298800.756100.0570*
H7B0.616900.141500.794400.0570*
H80.763100.450800.641300.0530*
H90.966000.437600.758900.0510*
H11A1.189600.013500.683400.0970*
H11B1.224700.000100.839700.0970*
H11C1.369000.061000.663900.0970*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0461 (4)0.0769 (5)0.0653 (5)0.0077 (3)0.0103 (3)0.0237 (4)
Br20.0559 (4)0.0717 (5)0.0471 (4)0.0049 (3)0.0153 (3)0.0228 (3)
O10.045 (2)0.0381 (19)0.056 (2)0.0031 (15)0.0190 (17)0.0109 (17)
O20.051 (2)0.061 (3)0.067 (3)0.006 (2)0.014 (2)0.010 (2)
C10.048 (3)0.036 (3)0.046 (3)0.001 (2)0.016 (2)0.012 (2)
C20.054 (3)0.042 (3)0.059 (3)0.001 (2)0.026 (3)0.015 (3)
C30.070 (4)0.051 (3)0.053 (3)0.013 (3)0.029 (3)0.022 (3)
C40.061 (4)0.051 (3)0.043 (3)0.012 (3)0.015 (3)0.015 (3)
C50.051 (3)0.043 (3)0.052 (3)0.008 (2)0.016 (2)0.012 (2)
C60.046 (3)0.043 (3)0.043 (3)0.006 (2)0.018 (2)0.010 (2)
C70.040 (3)0.052 (3)0.049 (3)0.002 (2)0.014 (2)0.014 (3)
C80.046 (3)0.045 (3)0.045 (3)0.005 (2)0.019 (2)0.012 (2)
C90.040 (2)0.033 (2)0.053 (3)0.0027 (19)0.017 (2)0.008 (2)
C100.042 (3)0.056 (3)0.055 (3)0.007 (2)0.022 (2)0.020 (3)
C110.062 (4)0.058 (4)0.086 (5)0.012 (3)0.031 (4)0.034 (4)
Geometric parameters (Å, º) top
Br1—C51.900 (7)C7—C81.528 (9)
Br2—C81.946 (6)C8—C91.531 (8)
O1—C91.446 (7)C10—C111.489 (11)
O1—C101.357 (8)C2—H20.9300
O2—C101.210 (9)C3—H30.9300
C1—C21.400 (9)C4—H40.9300
C1—C61.384 (9)C7—H7A0.9700
C1—C91.512 (8)C7—H7B0.9700
C2—C31.374 (10)C8—H80.9800
C3—C41.405 (11)C9—H90.9800
C4—C51.368 (9)C11—H11A0.9600
C5—C61.399 (9)C11—H11B0.9600
C6—C71.493 (8)C11—H11C0.9600
C9—O1—C10116.4 (5)C1—C2—H2121.00
C2—C1—C6121.9 (6)C3—C2—H2121.00
C2—C1—C9128.1 (6)C2—C3—H3120.00
C6—C1—C9110.0 (5)C4—C3—H3120.00
C1—C2—C3118.9 (6)C3—C4—H4120.00
C2—C3—C4120.1 (6)C5—C4—H4120.00
C3—C4—C5120.0 (6)C6—C7—H7A112.00
Br1—C5—C4120.1 (5)C6—C7—H7B111.00
Br1—C5—C6118.7 (5)C8—C7—H7A112.00
C4—C5—C6121.3 (6)C8—C7—H7B112.00
C1—C6—C5117.8 (6)H7A—C7—H7B109.00
C1—C6—C7112.1 (5)Br2—C8—H8108.00
C5—C6—C7130.1 (6)C7—C8—H8108.00
C6—C7—C8101.3 (5)C9—C8—H8108.00
Br2—C8—C7112.1 (4)O1—C9—H9112.00
Br2—C8—C9113.7 (4)C1—C9—H9112.00
C7—C8—C9107.2 (5)C8—C9—H9112.00
O1—C9—C1106.8 (4)C10—C11—H11A109.00
O1—C9—C8111.9 (5)C10—C11—H11B109.00
C1—C9—C8101.4 (5)C10—C11—H11C109.00
O1—C10—O2124.1 (6)H11A—C11—H11B109.00
O1—C10—C11110.8 (6)H11A—C11—H11C109.00
O2—C10—C11125.0 (7)H11B—C11—H11C109.00
C9—O1—C10—C11170.2 (6)C2—C3—C4—C50.4 (11)
C10—O1—C9—C1150.4 (5)C3—C4—C5—C60.1 (10)
C10—O1—C9—C899.5 (6)C3—C4—C5—Br1179.5 (5)
C9—O1—C10—O210.3 (9)Br1—C5—C6—C70.3 (9)
C9—C1—C2—C3177.0 (6)C4—C5—C6—C11.4 (9)
C2—C1—C6—C52.7 (9)C4—C5—C6—C7179.2 (6)
C2—C1—C6—C7179.2 (5)Br1—C5—C6—C1178.0 (4)
C6—C1—C2—C32.5 (9)C1—C6—C7—C815.9 (7)
C6—C1—C9—O199.5 (6)C5—C6—C7—C8166.3 (6)
C6—C1—C9—C817.8 (6)C6—C7—C8—Br2152.3 (4)
C2—C1—C9—O180.1 (7)C6—C7—C8—C926.7 (6)
C9—C1—C6—C5176.8 (5)Br2—C8—C9—C1152.1 (4)
C9—C1—C6—C71.3 (7)C7—C8—C9—O186.0 (6)
C2—C1—C9—C8162.7 (6)C7—C8—C9—C127.5 (6)
C1—C2—C3—C40.8 (10)Br2—C8—C9—O138.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.982.362.704 (8)100

Experimental details

Crystal data
Chemical formulaC11H10Br2O2
Mr333.99
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1423 (7), 8.6891 (9), 9.0028 (8)
α, β, γ (°)76.163 (8), 68.105 (7), 86.397 (8)
V3)573.60 (10)
Z2
Radiation typeMo Kα
µ (mm1)7.04
Crystal size (mm)0.43 × 0.35 × 0.28
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.152, 0.243
No. of measured, independent and
observed [I > 2σ(I)] reflections
6542, 2635, 1958
Rint0.110
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.178, 1.02
No. of reflections2635
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 1.42

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÇakmak, O., Erenler, R., Tutar, A. & Çelik, N. (2006). J. Org. Chem. 71, 1795–1801.  Web of Science PubMed Google Scholar
First citationCatto, M., Aliano, R., Carotti, A., Cellamare, S., Palluotto, F., Purgatorio, R., Stradis, A. D. & Campagna, F. (2010). Eur. J. Med. Chem. 45, 1359–1366.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationErenler, R. & Çakmak, O. (2004). J. Chem. Res. pp. 566–569.  CrossRef Google Scholar
First citationErenler, R., Demirtaş, İ., Büyükkıdan, B. & Çakmak, O. (2006). J. Chem. Res. pp. 753–757.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMcClure, K. J., Maher, M., Wu, N., Chaplan, S. R., Erkert, W. A., Lee, D. H., Wickenden, A. D., Hermann, M., Allison, B., Hawryluk, N., Breitenbucher, G. J. & Grice, C. A. (2011). Bioorg. Med. Chem. Lett. 21, 5197–5201.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMitrochkine, A., Eydoux, F., Martres, M., Gil, G., Heumann, A. & Reglier, M. (1995). Tetrahedron Asymmetry, 6, 59–62.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnyder, S. A. & Brill, Z. G. (2011). Org. Lett. 13, 5524–5527.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWu, Y. J. (2006). Tetrahedron Lett. 47, 8459–8461.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds