organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,5R*)-9-Phenyl-9-aza­bi­cyclo­[3.3.1]nonan-3-one

aDepartment of Pharmaceutics Engineering, Xihua University, Chengdu 610039, People's Republic of China, and bResearch Institute of Natural Gas Economy, Petrochina Oil and Gas Field Company, Chengdu 610051, People's Republic of China
*Correspondence e-mail: zhouyuwang77@gmail.com

(Received 1 March 2012; accepted 4 May 2012; online 12 May 2012)

In the title compound, C14H17NO, the piperidinone and piperidine rings both adopt a chair conformation. The chiral crystals were obtained from a racemic reaction product via spontaneous resolution.

Related literature

For the synthesis, see: Zhang (2003[Zhang, Y. (2003). CN Patent 1451660A.]). For applications of the compound, see: Vernekar et al. (2010[Vernekar, S. K. V., Hallaq, H. Y., Clarkson, G., Thompson, A. J., Silvestri, L., Lummis, S. C. R. & Lochner, M. (2010). J. Med. Chem. 53, 2324-2328.]); Lazny et al. (2011[Lazny, R., Wolosewicz, K., Zielinska, P., Lipkowska, Z. U. & Kalicki, P. (2011). Tetrahedron, 67, 9433-9439.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO

  • Mr = 215.29

  • Orthorhombic, P 21 21 21

  • a = 9.4028 (3) Å

  • b = 10.2524 (5) Å

  • c = 12.0473 (6) Å

  • V = 1161.38 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.918, Tmax = 1.000

  • 3285 measured reflections

  • 2218 independent reflections

  • 1722 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.092

  • S = 1.02

  • 2218 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The compound 1S*,5R*-9-phenyl-9-aza-bicyclo[3.3.1]nonan-3-one is an important intermediate for synthesizing granisetron derivatives. The bicyclic skeleton of 9-azabicyclo[3.3.1]nonane is a key substructure of a variety of bioactive compounds (Vernekar et al., 2010; Lazny et al., 2011). The racemic title compound was synthesized by the Mannich reaction and spontaneous resolution occurred on recrystallization from a mixture of ethyl acetate and petroleum ether.

In the title structure the N1/C1—C5 piperidinone ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.5159 (3) Å, θ = 158.26 (3)° and ϕ = 173.0692 (12)°. The N1/C1/C8—C5 piperidine ring has a chair conformation, too [Q = 0.5727 (3) Å, θ = 7.74 (12)° and ϕ = 23.8669 (13)°]. The relative configuration of C1 and C5 is S*, R* respectively.

Related literature top

For the synthesis, see: Zhang (2003). For applications of the compound, see: Vernekar et al. (2010); Lazny et al. (2011). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

To a stirred solution of glutaraldehyde (1.32 ml, 5 mmol) and aniline (0.55 ml,6 mmol) in water (10 ml), 3-oxopentanedioic acid (0.88 g,6 mmol) was added. The mixture was stirred overnight at room temperature. Then the pH was adjusted to 5 with aq. HCl and the mixture was refluxed for another one hour. Then sodium hydroxide was added to increase the pH to 9. The mixture was extracted with ethyl-acetate. The combined extract was dried over anhydrous MgSO4 and evaporated in vacuo. The residue was purified through column chromatography on silica gel (eluent: hexane/EtOAc = 4/1) to give 9-phenyl-9-aza-bicyclo[3.3.1]nonan-3-one. Then the racemic mixture was crystallized from a solution in a 1:10 (v/v) mixture of ethyl acetate and petroleum ether to produce the title compound.

Refinement top

All H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.97 Å for aliphatic CH, 0.98 Å for CH2 and 0.93 Å for aromatic CH groups, respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, the absolute configuration is not determined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
[Figure 2] Fig. 2. A packing diagram for the title compound.
(1S*,5R*)-9-Phenyl-9-azabicyclo[3.3.1]nonan-3-one top
Crystal data top
C14H17NODx = 1.231 Mg m3
Mr = 215.29Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, P212121Cell parameters from 1237 reflections
a = 9.4028 (3) Åθ = 2.9–29.0°
b = 10.2524 (5) ŵ = 0.08 mm1
c = 12.0473 (6) ÅT = 293 K
V = 1161.38 (9) Å3Block, colourless
Z = 40.40 × 0.40 × 0.35 mm
F(000) = 464
Data collection top
Agilent Xcalibur Eos
diffractometer
2218 independent reflections
Radiation source: Enhance (Mo) X-ray Source1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 117
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Agilent, 2011)
k = 912
Tmin = 0.918, Tmax = 1.000l = 815
3285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H17NOV = 1161.38 (9) Å3
Mr = 215.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4028 (3) ŵ = 0.08 mm1
b = 10.2524 (5) ÅT = 293 K
c = 12.0473 (6) Å0.40 × 0.40 × 0.35 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2218 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Agilent, 2011)
1722 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 1.000Rint = 0.015
3285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
2218 reflectionsΔρmin = 0.13 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58709 (17)0.01586 (16)0.68342 (15)0.0838 (6)
N10.19284 (14)0.18245 (14)0.65084 (12)0.0368 (4)
C10.31907 (18)0.26416 (18)0.63463 (16)0.0409 (5)
H10.29850.35060.66530.049*
C20.4480 (2)0.20832 (19)0.69713 (16)0.0472 (5)
H2A0.43670.22650.77570.057*
H2B0.53290.25320.67210.057*
C30.4692 (2)0.0642 (2)0.68231 (16)0.0510 (6)
C40.3376 (2)0.01633 (18)0.67070 (17)0.0489 (5)
H4A0.36180.09710.63320.059*
H4B0.30320.03860.74420.059*
C50.2173 (2)0.05077 (18)0.60634 (17)0.0412 (5)
H50.13020.00010.61740.049*
C60.2468 (2)0.0573 (2)0.48223 (17)0.0494 (5)
H6A0.16120.08540.44420.059*
H6B0.27030.02930.45560.059*
C70.3672 (2)0.1497 (2)0.45334 (16)0.0522 (6)
H7A0.37050.16260.37360.063*
H7B0.45710.11220.47660.063*
C80.3452 (2)0.2797 (2)0.51068 (17)0.0510 (5)
H8A0.42860.33380.49940.061*
H8B0.26460.32390.47740.061*
C90.11420 (18)0.19480 (18)0.75009 (15)0.0363 (4)
C100.1472 (2)0.28634 (19)0.83142 (16)0.0435 (5)
H100.22610.34000.82210.052*
C110.0647 (2)0.2989 (2)0.92593 (16)0.0537 (6)
H110.08960.36020.97940.064*
C120.0534 (2)0.2223 (2)0.94206 (16)0.0597 (6)
H120.10840.23081.00580.072*
C130.0880 (2)0.1329 (2)0.8617 (2)0.0605 (6)
H130.16800.08070.87120.073*
C140.0069 (2)0.1187 (2)0.76732 (18)0.0497 (5)
H140.03330.05740.71420.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0585 (9)0.0818 (13)0.1110 (16)0.0252 (10)0.0147 (10)0.0074 (12)
N10.0385 (8)0.0357 (8)0.0362 (9)0.0040 (7)0.0001 (7)0.0009 (7)
C10.0411 (10)0.0361 (10)0.0455 (12)0.0027 (9)0.0024 (9)0.0022 (9)
C20.0401 (10)0.0537 (12)0.0478 (13)0.0053 (10)0.0056 (9)0.0027 (11)
C30.0514 (12)0.0589 (13)0.0428 (13)0.0091 (12)0.0071 (10)0.0064 (11)
C40.0646 (13)0.0389 (10)0.0431 (12)0.0059 (11)0.0016 (11)0.0032 (9)
C50.0461 (11)0.0371 (10)0.0405 (11)0.0071 (9)0.0010 (9)0.0024 (9)
C60.0536 (11)0.0577 (13)0.0370 (12)0.0021 (11)0.0035 (10)0.0052 (11)
C70.0590 (13)0.0634 (13)0.0343 (11)0.0013 (11)0.0053 (10)0.0057 (10)
C80.0501 (12)0.0536 (12)0.0494 (12)0.0058 (11)0.0045 (10)0.0128 (11)
C90.0371 (9)0.0379 (10)0.0340 (10)0.0052 (9)0.0020 (8)0.0040 (9)
C100.0425 (10)0.0446 (11)0.0434 (11)0.0035 (10)0.0026 (9)0.0023 (10)
C110.0581 (13)0.0581 (14)0.0450 (13)0.0129 (12)0.0016 (11)0.0081 (11)
C120.0618 (14)0.0737 (16)0.0436 (13)0.0145 (13)0.0173 (12)0.0027 (12)
C130.0533 (13)0.0651 (15)0.0630 (16)0.0072 (12)0.0156 (12)0.0051 (13)
C140.0495 (11)0.0528 (13)0.0467 (13)0.0078 (11)0.0043 (10)0.0023 (10)
Geometric parameters (Å, º) top
O1—C31.215 (2)C6—C71.517 (3)
N1—C11.466 (2)C7—H7A0.9700
N1—C51.471 (2)C7—H7B0.9700
N1—C91.412 (2)C7—C81.516 (3)
C1—H10.9800C8—H8A0.9700
C1—C21.537 (3)C8—H8B0.9700
C1—C81.522 (3)C9—C101.392 (3)
C2—H2A0.9700C9—C141.396 (3)
C2—H2B0.9700C10—H100.9300
C2—C31.501 (3)C10—C111.384 (3)
C3—C41.494 (3)C11—H110.9300
C4—H4A0.9700C11—C121.374 (3)
C4—H4B0.9700C12—H120.9300
C4—C51.534 (3)C12—C131.373 (3)
C5—H50.9800C13—H130.9300
C5—C61.522 (3)C13—C141.376 (3)
C6—H6A0.9700C14—H140.9300
C6—H6B0.9700
C1—N1—C5110.46 (14)C7—C6—C5112.88 (17)
C9—N1—C1119.07 (15)C7—C6—H6A109.0
C9—N1—C5118.22 (14)C7—C6—H6B109.0
N1—C1—H1107.9C6—C7—H7A109.6
N1—C1—C2111.11 (15)C6—C7—H7B109.6
N1—C1—C8108.76 (15)H7A—C7—H7B108.2
C2—C1—H1107.9C8—C7—C6110.08 (16)
C8—C1—H1107.9C8—C7—H7A109.6
C8—C1—C2113.10 (16)C8—C7—H7B109.6
C1—C2—H2A108.7C1—C8—H8A109.2
C1—C2—H2B108.7C1—C8—H8B109.2
H2A—C2—H2B107.6C7—C8—C1112.14 (16)
C3—C2—C1114.39 (17)C7—C8—H8A109.2
C3—C2—H2A108.7C7—C8—H8B109.2
C3—C2—H2B108.7H8A—C8—H8B107.9
O1—C3—C2121.5 (2)C10—C9—N1122.68 (16)
O1—C3—C4122.1 (2)C10—C9—C14117.02 (18)
C4—C3—C2116.42 (18)C14—C9—N1120.20 (17)
C3—C4—H4A108.7C9—C10—H10119.4
C3—C4—H4B108.7C11—C10—C9121.13 (19)
C3—C4—C5114.20 (16)C11—C10—H10119.4
H4A—C4—H4B107.6C10—C11—H11119.5
C5—C4—H4A108.7C12—C11—C10121.1 (2)
C5—C4—H4B108.7C12—C11—H11119.5
N1—C5—C4110.04 (15)C11—C12—H12120.9
N1—C5—H5108.0C13—C12—C11118.28 (19)
N1—C5—C6110.25 (16)C13—C12—H12120.9
C4—C5—H5108.0C12—C13—H13119.3
C6—C5—C4112.44 (16)C12—C13—C14121.5 (2)
C6—C5—H5108.0C14—C13—H13119.3
C5—C6—H6A109.0C9—C14—H14119.5
C5—C6—H6B109.0C13—C14—C9121.0 (2)
H6A—C6—H6B107.8C13—C14—H14119.5
O1—C3—C4—C5146.4 (2)C5—N1—C1—C261.85 (19)
N1—C1—C2—C346.2 (2)C5—N1—C1—C863.28 (19)
N1—C1—C8—C758.9 (2)C5—N1—C9—C10142.12 (17)
N1—C5—C6—C754.0 (2)C5—N1—C9—C1441.6 (2)
N1—C9—C10—C11177.64 (17)C5—C6—C7—C849.0 (2)
N1—C9—C14—C13177.52 (18)C6—C7—C8—C151.6 (2)
C1—N1—C5—C463.47 (19)C8—C1—C2—C376.4 (2)
C1—N1—C5—C661.12 (19)C9—N1—C1—C279.9 (2)
C1—N1—C9—C103.3 (2)C9—N1—C1—C8155.02 (16)
C1—N1—C9—C14179.62 (16)C9—N1—C5—C478.60 (18)
C1—C2—C3—O1148.4 (2)C9—N1—C5—C6156.81 (15)
C1—C2—C3—C434.0 (2)C9—C10—C11—C120.7 (3)
C2—C1—C8—C765.0 (2)C10—C9—C14—C131.0 (3)
C2—C3—C4—C535.9 (2)C10—C11—C12—C130.2 (3)
C3—C4—C5—N149.8 (2)C11—C12—C13—C140.4 (3)
C3—C4—C5—C673.5 (2)C12—C13—C14—C90.2 (3)
C4—C5—C6—C769.2 (2)C14—C9—C10—C111.2 (3)

Experimental details

Crystal data
Chemical formulaC14H17NO
Mr215.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.4028 (3), 10.2524 (5), 12.0473 (6)
V3)1161.38 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.40 × 0.35
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(ABSPACK in CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.918, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3285, 2218, 1722
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.092, 1.02
No. of reflections2218
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by the Open Fund of the Key Laboratory of Sichuan Province (grant No. Szjj2011-005) and the Research Fund of the Key Laboratory of TCM Biotechnology (Xihua University).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLazny, R., Wolosewicz, K., Zielinska, P., Lipkowska, Z. U. & Kalicki, P. (2011). Tetrahedron, 67, 9433–9439.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernekar, S. K. V., Hallaq, H. Y., Clarkson, G., Thompson, A. J., Silvestri, L., Lummis, S. C. R. & Lochner, M. (2010). J. Med. Chem. 53, 2324–2328.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y. (2003). CN Patent 1451660A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds