organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1917-o1918

L-Alanylglycylhistamine di­hydro­chloride

aLaboratoire SRSMC (UMR 7565 CNRS - Université de Lorraine), Groupe SUCRES, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France, and bLaboratoire CRM2 (UMR 7036 CNRS - Université de Lorraine), Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
*Correspondence e-mail: katalin.selmeczi@univ-lorraine.fr

(Received 22 March 2012; accepted 23 May 2012; online 31 May 2012)

In the title compound {systematic name: 4-[2-({N-[(2S)-2-ammonio­propano­yl]glyc­yl}amino)­eth­yl]-1H-imidazol-3-ium dichloride}, C10H19N5O22+·2Cl, the pseudo-tripeptide L-alanyl­glycyl­histamine is protonated at both the terminal amino group and the histidine N2 atom. The resulting positive charges are neutralized by two chloride anions. In the crystal, the organic cation adopts a twisted conformation about the CH2—CH2 bond of histamine and about the C—N bond in the main chain, stabilized by a short intra­molecular C—H⋯O contact. In the crystal, N+—H⋯O and N+—H⋯Cl hydrogen bonds link the mol­ecules into infinite sheets parallel to the (100) plane. The stacking of these sheets along the a axis is supported by Namide—H⋯Cl hydrogen bonds.

Related literature

For the complexation ability of L-Ala-Gly-HA, see: Gizzi et al. (2005[Gizzi, P., Henry, B., Rubini, P., Giroux, S. & Wenger, E. (2005). J. Inorg. Biochem. 99, 1182-1192.]). For bond lengths and angles in other oligopeptides, see: Itoh et al. (1977[Itoh, H., Yamane, T., Ashida, T. & Kakudo, M. (1977). Acta Cryst. B33, 2959-2961.]); Selmeczi et al. (2008[Selmeczi, K., Henry, B., Wenger, E. & Dahaoui, S. (2008). Acta Cryst. E64, o2476.]). For discussion of hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For the synthesis of pseudo-peptides, see: Henry et al. (1993[Henry, B., Gajda, T., Selve, C. & Delpuech, J.-J. (1993). Amino Acids, 5, 113-114.]). For the definition of torsion angles in peptides, see: IUPAC–IUB Commission on Biochemical Nomenclature (1970[IUPAC-IUB Commission on Biochemical Nomenclature. (1970). J. Mol. Biol. 52, 1-17.]).

[Scheme 1]

Experimental

Crystal data
  • C10H19N5O22+·2Cl

  • Mr = 312.20

  • Monoclinic, P 21

  • a = 7.5864 (3) Å

  • b = 7.4083 (3) Å

  • c = 13.7673 (6) Å

  • β = 105.337 (2)°

  • V = 746.20 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 100 K

  • 0.45 × 0.25 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 15818 measured reflections

  • 3574 independent reflections

  • 3459 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.00

  • 3574 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1643 Friedel-pairs

  • Flack parameter: −0.03 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl2 0.88 2.21 3.0503 (15) 159
N2—H2N⋯O1i 0.88 1.82 2.6962 (19) 175
N4—H4⋯Cl1ii 0.88 2.48 3.3100 (13) 157
N5—H5A⋯Cl1 0.91 2.38 3.2046 (14) 151
N5—H5B⋯Cl2iii 0.91 2.24 3.1130 (14) 161
N5—H5C⋯Cl1iv 0.91 2.37 3.2676 (14) 170
C3—H3⋯O2 0.95 2.30 3.2074 (19) 161
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iv) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The metal complexation ability of the N-terminal sequence in serum albumin (HSA, involved in the transport of metal ions in blood) is among the best studied examples of peptide–metal interactions. The so-called ATCUN-motif of HSA (Amino Terminal Cu(II) and Ni(II) binding site) was mimicked, among others, by the ligand L-Alanyl-Glycyl Histamine (L-Ala-Gly-HA) (Gizzi et al., 2005). We report here the molecular structure of the dihydrochloride salt of the pseudo-tripeptide L-Ala-Gly-HA. In the title compound, the L-Ala-Gly-HA part is doubly positively charged on the amino and the imidazole groups. This double charge is neutralized by the presence of two chloride ions (Fig. 1). The absolute configuration (S) of atom C9 was assumed from the stereochemistry of the precursor Boc-L-Ala-Gly-OH. In the organic cation the bond distances and angles of the peptide bonds and of the protonated imidazole ring are close to the values measured for other oligopeptides (Itoh et al., 1977; Selmeczi et al., 2008). The conformation of the title tripeptide can be determined by analysis of the torsion angles about the C—C (ψ), C—N (ω) and N—C (ϕ) bonds (IUPAC–IUB Commission on Biochemical Nomenclature, 1970). The conformation may be considered as fully extended (open) if the magnitude of ψ, ω and ϕ angles is near 180° (e.g. for Gly-β-Ala-Histamine; Selmeczi et al., 2008). The torsion angle ψ about the C4—C5 bond in L-Ala-Gly-HA is -56.01° resulting in the folding back of the imidazole ring on the N3—C6—O1 bonds. In addition, the main chain of the tripeptide adopts a twisted conformation defined by the small value of torsion angle of ϕ about N4—C7 (90.63°) and of ψ about C7—C6 (-1.62°). These torsion angle values show the folded (closed) conformation of L-Ala-Gly-HA. All protons attached to the N1, N2, N4 and N5 nitrogen atoms are involved in moderate hydrogen bonding (Steiner, 2002). The N1 and N5 nitrogen atoms form N—H···Cl hydrogen bonds with the Cl2 and Cl1, Cl2iii, Cl1iv atoms, respectively [symmetry codes: (iii) -x + 1, y + 1/2, -z + 2, (iv) -x + 1, y - 1/2, -z + 2]. The N2 nitrogen atom forms stronger H-bond with the O1i carbonyl oxygen atom of a neighbouring peptide molecule [symmetry code: (i) -x + 1, y + 1/2, -z + 1]. The C3—H···O2 intramolecular contact is also included in the H-bond list. This interaction results from the bending back of imidazole ring on the peptide main chain and it stabilizes the `closed' conformation of the molecule. The O2 carbonyl oxygen atom participates in relatively close interaction with the neighbouring N5iii nitrogen atom, reflecting a partial positive charge on the latter (distance O2···N5 is 2.917 Å). These hydrogen bonds link the molecules into infinite two-dimensional sheets parallel to the (100) plane forming a stacking structure along the a axis (Fig. 2). These horizontal layers are interlinked by an another N—H···Cl hydrogen bond present in the structure between N4 and Cl1ii [symmetry code: (ii) -x + 2, y - 1/2, -z + 2], thus forming a three-dimensional framework.

Related literature top

For the complexation ability of L-Ala-Gly-HA, see: Gizzi et al. (2005). For bond lengths and angles in other oligopeptides, see: Itoh et al. (1977); Selmeczi et al. (2008). For discussion of hydrogen bonding, see: Steiner (2002). For the synthesis of pseudo-peptides, see: Henry et al. (1993). For the definition of torsion angles in peptides, see: IUPAC–IUB Commission on Biochemical Nomenclature (1970).

Experimental top

The title compound was synthesized in one step according to the procedure described earlier (Henry et al., 1993). Histamine dihydrochloride and ethyl-diisopropyl-amine in chloroform were added to the commercially available N-(tert-butoxycarbonyl)-L-alanyl-glycine-OH (Boc-L-Ala-Gly-OH) at room temperature. The mixture was stirred for 10 additional hours at rt. Deprotection of the primary amine was performed with a mixture of HCl/Et2O. The title compound was obtained as white powder with 60% of yield. Suitable crystals were obtained by slow evaporation of water from an acidic aqueous solution (pH 2) of the title compound. ESI-MS+ (m/z): calculated for C10H17N5O2 239.14, found 240.20. Anal. calc. for C10H17N5O2.2HCl: C, 38.47; H, 6.13; N, 22.43. Found: C, 37.96; H, 6.08; N, 21.87%.

Refinement top

The absolute configurations of the title compound was known from the method of synthesis (enantiomer S) and it was also confirmed from the diffraction experiments. All H atoms were located in difference Fourier maps. The C/N-bonded H atoms were placed at calculated positions and refined using a riding model, with Cmethyl—H distance of 0.98 Å, Cmethylene—H distance of 0.99 Å, Cmethine—H distance of 1 Å, Caryl—H distance of 0.95 Å, and with N—H distance of 0.88 Å. The H-atom Uiso parameters were fixed at 1.2Ueq(C) for methine, methylene and aryl C—H, at 1.5Ueq(C) for methyl C—H, at 1.2Ueq(C) for aryl C—H and at 1.2Ueq(N) for the N—H group.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of L-Ala-Gly-HA.2HCl with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound along the b axis, showing the N—H···O and N—H···Cl (orange dotted line), C—H···O (light blue dotted line) hydrogen bonds and N—O short contacts (green dotted line) in the (100) plane.
L-Alanylglycylhistamine dihydrochloride top
Crystal data top
C10H19N5O22+·2ClF(000) = 328
Mr = 312.20Dx = 1.390 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ybCell parameters from 1776 reflections
a = 7.5864 (3) Åθ = 0.4–30.0°
b = 7.4083 (3) ŵ = 0.44 mm1
c = 13.7673 (6) ÅT = 100 K
β = 105.337 (2)°Prismatic, colourless
V = 746.20 (5) Å30.45 × 0.25 × 0.11 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3459 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Horizonally mounted graphite crystal monochromatorθmax = 28.0°, θmin = 2.8°
Detector resolution: 9 pixels mm-1h = 1010
ω scansk = 99
15818 measured reflectionsl = 1818
3574 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2259P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3574 reflectionsΔρmax = 0.21 e Å3
174 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), with 1643 Friedel-pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C10H19N5O22+·2ClV = 746.20 (5) Å3
Mr = 312.20Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5864 (3) ŵ = 0.44 mm1
b = 7.4083 (3) ÅT = 100 K
c = 13.7673 (6) Å0.45 × 0.25 × 0.11 mm
β = 105.337 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3459 reflections with I > 2σ(I)
15818 measured reflectionsRint = 0.060
3574 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.21 e Å3
S = 1.00Δρmin = 0.23 e Å3
3574 reflectionsAbsolute structure: Flack (1983), with 1643 Friedel-pairs
174 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75003 (4)0.96855 (5)0.94053 (3)0.01717 (9)
Cl20.14366 (5)0.19501 (5)0.69324 (3)0.01977 (9)
O20.54905 (14)0.49471 (17)0.89693 (8)0.0181 (2)
O10.73519 (18)0.52373 (18)0.61858 (9)0.0267 (3)
N30.76898 (17)0.74018 (19)0.73704 (10)0.0178 (3)
H3N0.80020.76540.80180.021*
N50.64458 (17)0.66369 (18)1.08050 (10)0.0161 (3)
H5A0.63770.76861.04530.024*
H5B0.68190.68761.14770.024*
H5C0.53260.61031.06570.024*
N40.84631 (16)0.4832 (2)0.89235 (9)0.0169 (3)
H40.96050.50560.92510.020*
N10.21053 (19)0.5728 (2)0.62237 (11)0.0213 (3)
H1N0.16190.47440.64010.026*
N20.2662 (2)0.7937 (2)0.53338 (11)0.0213 (3)
H2N0.26010.86650.48210.026*
C70.8047 (2)0.4224 (2)0.78845 (13)0.0196 (3)
H7A0.69670.34210.77600.023*
H7B0.90870.34890.78010.023*
C20.3860 (2)0.8128 (2)0.62861 (12)0.0192 (3)
C80.7130 (2)0.5057 (2)0.93940 (11)0.0156 (3)
C90.7782 (2)0.5401 (2)1.05237 (11)0.0152 (3)
H90.90150.59821.06890.018*
C40.5264 (2)0.9575 (2)0.65566 (13)0.0222 (3)
H4A0.52191.01190.72070.027*
H4B0.49691.05340.60380.027*
C30.3491 (2)0.6734 (2)0.68410 (12)0.0195 (3)
H30.40770.64940.75280.023*
C60.7665 (2)0.5683 (2)0.70817 (12)0.0189 (3)
C100.7887 (2)0.3630 (2)1.10983 (12)0.0198 (3)
H10A0.83460.38611.18220.030*
H10B0.87160.27991.08830.030*
H10C0.66660.30901.09590.030*
C50.7215 (2)0.8883 (2)0.66454 (13)0.0206 (3)
H5D0.73050.84610.59780.025*
H5E0.80950.98840.68620.025*
C10.1628 (2)0.6491 (2)0.53191 (13)0.0225 (3)
H10.07020.60710.47570.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01378 (15)0.01813 (17)0.01988 (17)0.00020 (13)0.00496 (12)0.00123 (13)
Cl20.01907 (17)0.02083 (19)0.01823 (17)0.00004 (13)0.00283 (13)0.00210 (13)
O20.0129 (5)0.0223 (6)0.0183 (5)0.0021 (4)0.0025 (4)0.0001 (5)
O10.0369 (7)0.0261 (7)0.0169 (5)0.0044 (5)0.0070 (5)0.0050 (5)
N30.0164 (6)0.0187 (6)0.0176 (6)0.0024 (5)0.0033 (5)0.0018 (5)
N50.0142 (6)0.0174 (7)0.0165 (6)0.0004 (5)0.0036 (5)0.0007 (5)
N40.0134 (5)0.0210 (7)0.0165 (6)0.0013 (5)0.0042 (4)0.0017 (5)
N10.0191 (6)0.0214 (7)0.0222 (7)0.0018 (5)0.0036 (5)0.0044 (6)
N20.0220 (7)0.0233 (7)0.0178 (6)0.0015 (5)0.0038 (5)0.0049 (5)
C70.0218 (7)0.0188 (8)0.0189 (7)0.0021 (6)0.0068 (6)0.0036 (6)
C20.0173 (7)0.0207 (8)0.0191 (7)0.0030 (6)0.0040 (6)0.0013 (6)
C80.0150 (6)0.0142 (7)0.0174 (7)0.0007 (5)0.0040 (5)0.0004 (5)
C90.0122 (6)0.0158 (7)0.0172 (7)0.0017 (5)0.0032 (5)0.0014 (5)
C40.0226 (7)0.0175 (7)0.0262 (8)0.0001 (7)0.0058 (6)0.0016 (7)
C30.0176 (7)0.0219 (8)0.0182 (7)0.0001 (6)0.0034 (6)0.0018 (6)
C60.0150 (7)0.0223 (8)0.0201 (7)0.0007 (6)0.0061 (6)0.0015 (6)
C100.0209 (7)0.0173 (8)0.0202 (7)0.0009 (6)0.0037 (6)0.0007 (6)
C50.0210 (7)0.0184 (8)0.0231 (8)0.0017 (6)0.0072 (6)0.0016 (6)
C10.0205 (8)0.0262 (9)0.0189 (8)0.0010 (6)0.0018 (6)0.0019 (6)
Geometric parameters (Å, º) top
O2—C81.2292 (18)C7—C61.518 (2)
O1—C61.238 (2)C7—H7A0.9900
N3—C61.333 (2)C7—H7B0.9900
N3—C51.463 (2)C2—C31.357 (2)
N3—H3N0.8800C2—C41.488 (2)
N5—C91.491 (2)C8—C91.524 (2)
N5—H5A0.9100C9—C101.523 (2)
N5—H5B0.9100C9—H91.0000
N5—H5C0.9100C4—C51.540 (2)
N4—C81.3478 (19)C4—H4A0.9900
N4—C71.452 (2)C4—H4B0.9900
N4—H40.8800C3—H30.9500
N1—C11.328 (2)C10—H10A0.9800
N1—C31.382 (2)C10—H10B0.9800
N1—H1N0.8800C10—H10C0.9800
N2—C11.325 (2)C5—H5D0.9900
N2—C21.391 (2)C5—H5E0.9900
N2—H2N0.8800C1—H10.9500
C6—N3—C5122.12 (14)C8—C9—C10110.15 (13)
C6—N3—H3N118.9N5—C9—H9109.6
C5—N3—H3N118.9C8—C9—H9109.6
C9—N5—H5A109.5C10—C9—H9109.6
C9—N5—H5B109.5C2—C4—C5112.89 (14)
H5A—N5—H5B109.5C2—C4—H4A109.0
C9—N5—H5C109.5C5—C4—H4A109.0
H5A—N5—H5C109.5C2—C4—H4B109.0
H5B—N5—H5C109.5C5—C4—H4B109.0
C8—N4—C7121.08 (13)H4A—C4—H4B107.8
C8—N4—H4119.5C2—C3—N1107.51 (14)
C7—N4—H4119.5C2—C3—H3126.2
C1—N1—C3108.74 (15)N1—C3—H3126.2
C1—N1—H1N125.6O1—C6—N3122.41 (16)
C3—N1—H1N125.6O1—C6—C7119.02 (15)
C1—N2—C2109.45 (14)N3—C6—C7118.57 (14)
C1—N2—H2N125.3C9—C10—H10A109.5
C2—N2—H2N125.3C9—C10—H10B109.5
N4—C7—C6116.51 (14)H10A—C10—H10B109.5
N4—C7—H7A108.2C9—C10—H10C109.5
C6—C7—H7A108.2H10A—C10—H10C109.5
N4—C7—H7B108.2H10B—C10—H10C109.5
C6—C7—H7B108.2N3—C5—C4111.23 (14)
H7A—C7—H7B107.3N3—C5—H5D109.4
C3—C2—N2105.84 (15)C4—C5—H5D109.4
C3—C2—C4130.41 (15)N3—C5—H5E109.4
N2—C2—C4123.71 (15)C4—C5—H5E109.4
O2—C8—N4123.82 (14)H5D—C5—H5E108.0
O2—C8—C9120.74 (14)N2—C1—N1108.46 (15)
N4—C8—C9115.40 (13)N2—C1—H1125.8
N5—C9—C8107.95 (12)N1—C1—H1125.8
N5—C9—C10109.86 (13)
C8—N4—C7—C690.63 (19)N2—C2—C3—N10.45 (19)
C1—N2—C2—C30.2 (2)C4—C2—C3—N1177.31 (17)
C1—N2—C2—C4177.72 (16)C1—N1—C3—C20.5 (2)
C7—N4—C8—O27.3 (2)C5—N3—C6—O14.6 (2)
C7—N4—C8—C9170.48 (14)C5—N3—C6—C7175.71 (14)
O2—C8—C9—N535.58 (19)N4—C7—C6—O1178.07 (14)
N4—C8—C9—N5146.53 (14)N4—C7—C6—N31.6 (2)
O2—C8—C9—C1084.37 (18)C6—N3—C5—C4102.05 (17)
N4—C8—C9—C1093.53 (16)C2—C4—C5—N356.02 (19)
C3—C2—C4—C572.3 (2)C2—N2—C1—N10.1 (2)
N2—C2—C4—C5105.10 (18)C3—N1—C1—N20.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.882.213.0503 (15)159
N2—H2N···O1i0.881.822.6962 (19)175
N4—H4···Cl1ii0.882.483.3100 (13)157
N5—H5A···Cl10.912.383.2046 (14)151
N5—H5B···Cl2iii0.912.243.1130 (14)161
N5—H5C···Cl1iv0.912.373.2676 (14)170
C3—H3···O20.952.303.2074 (19)161
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+2; (iii) x+1, y+1/2, z+2; (iv) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC10H19N5O22+·2Cl
Mr312.20
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)7.5864 (3), 7.4083 (3), 13.7673 (6)
β (°) 105.337 (2)
V3)746.20 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.45 × 0.25 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15818, 3574, 3459
Rint0.060
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.00
No. of reflections3574
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23
Absolute structureFlack (1983), with 1643 Friedel-pairs
Absolute structure parameter0.03 (4)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.8802.2123.0503 (15)159
N2—H2N···O1i0.8801.8182.6962 (19)175
N4—H4···Cl1ii0.8802.4843.3100 (13)157
N5—H5A···Cl10.9102.3773.2046 (14)151
N5—H5B···Cl2iii0.9102.2403.1130 (14)161
N5—H5C···Cl1iv0.9102.3693.2676 (14)170
C3—H3···O20.9492.2973.2074 (19)161
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+2; (iii) x+1, y+1/2, z+2; (iv) x+1, y1/2, z+2.
 

Acknowledgements

Technical support (NMR, ESI-MS and X-ray measurements) from the Université de Lorraine is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGizzi, P., Henry, B., Rubini, P., Giroux, S. & Wenger, E. (2005). J. Inorg. Biochem. 99, 1182–1192.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHenry, B., Gajda, T., Selve, C. & Delpuech, J.-J. (1993). Amino Acids, 5, 113–114.  Google Scholar
First citationItoh, H., Yamane, T., Ashida, T. & Kakudo, M. (1977). Acta Cryst. B33, 2959–2961.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIUPAC–IUB Commission on Biochemical Nomenclature. (1970). J. Mol. Biol. 52, 1–17.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSelmeczi, K., Henry, B., Wenger, E. & Dahaoui, S. (2008). Acta Cryst. E64, o2476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1917-o1918
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds