organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1799-o1800

1-{(E)-[3-(1H-Imidazol-1-yl)-1-(4-meth­­oxy­phen­yl)propyl­­idene]amino}-3-(2-methyl­phen­yl)urea

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bMedicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622, Dokki, Giza, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 May 2012; accepted 15 May 2012; online 19 May 2012)

In the title compound, C21H23N5O2, the conformation about the imine bond [1.287 (3) Å] is E. Overall, the mol­ecule has a disk shape, the dihedral angles between the imidazole ring and the meth­oxy­phenyl and methyl­phenyl rings being 49.42 (13) and 42.62 (13)°, respectively; the dihedral angle between the benzene rings is 20.11 (11)°. In the urea moiety, the N—H atoms are anti to each other and one of these forms an intra­molecular N—H⋯N hydrogen bond. In the crystal, centrosymmetric dimers are formed via N—H⋯N(imidazole) hydrogen bonds, which are connected into a three-dimensional architecture by C—H⋯O(carbon­yl) and (methyl­ene)C—H⋯π inter­actions. The crystal studied was a non-merohedral twin with a minor component of 48.3 (1)%.

Related literature

For background to the prevalence of epilepsy and epilepsy drugs, see: Sander & Shorvon (1987[Sander, J. W. A. S. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829-839.]); Saxena & Saxena (1995[Saxena, A. K. & Saxena, M. (1995). Prog. Drug Res. 44, 185-291.]); Edafiogho & Scott (1996[Edafiogho, I. O. & Scott, K. R. (1996). Burgers Medicinal Chemistry and Drug Discovery, edited by M. E. Wolf, p. 175. New York: John Wiley and Sons Inc.]). For the use of aryl semicarbazones as anti-convulsants, see: Aboul-Enein et al. (2012[Aboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360-369.]); Dimmock et al. (1993[Dimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Duffy, M. S. & Reid, R. S. (1993). J. Med. Chem. 36, 2243-2252.], 1995[Dimmock, J. R., Sidhu, K. K., Tumber, S. D., Basran, S. K., Chen, M. & Quail, J. W. (1995). Eur. J. Med. Chem. 30, 287-301.]). For a related structure, see: Attia et al. (2012[Attia, M. I., Aboul-Enein, M. N., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1848-o1849.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N5O2

  • Mr = 377.44

  • Monoclinic, P 21 /c

  • a = 10.7798 (12) Å

  • b = 20.7750 (19) Å

  • c = 8.7652 (18) Å

  • β = 105.318 (15)°

  • V = 1893.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.692, Tmax = 1.000

  • 15110 measured reflections

  • 7494 independent reflections

  • 4657 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.216

  • S = 0.98

  • 7494 reflections

  • 263 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3 0.87 (3) 2.04 (2) 2.568 (3) 118 (2)
N2—H2n⋯N5i 0.87 (3) 2.17 (3) 3.029 (3) 171 (2)
C16—H16B⋯O1ii 0.98 2.44 3.398 (3) 165
C20—H20⋯O1i 0.95 2.51 3.226 (3) 133
C17—H17ACg2iii 0.99 2.80 3.391 (3) 119
C18—H18BCg3iv 0.99 2.78 3.569 (2) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+1, -z+2; (iv) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Epilepsy is one of the most widespread pathologies of the human brain, affecting approximately 1% of world population (Sander & Shorvon, 1987). Current anti-epileptic drugs suffer from a number of disadvantages including the fact that approximately one quarter of epileptic patients have seizures that are resistant to the available medical therapy (Saxena & Saxena, 1995). Additionally, many clinically used anti-epileptic drugs cause significant side-effects which may limit their usefulness (Edafiogho & Scott, 1996). Accordingly, the evolution of novel anti-convulsants is a continuing challenge. An evaluation of the literature revealed that aryl semicarbazones were found to exhibit significant anti-convulsant activities (Aboul-Enein et al., 2012; Dimmock et al., 1995; Dimmock et al., 1993). The novel title compound, namely (2E)-2-[3-(1H-imidazol-1-yl)-1-(4-methoxphenyl)propylidene]-N-(2-methylphenyl)hydrazinecarboxamide (I) will be evaluated as anti-convulsant in experimental animal models. Herein, we describe the results of its crystal structure determination.

In (I), Fig. 1, the conformation about the N3C9 bond [1.287 (3) Å] is E. The dihedral angles between the imidazolyl ring and the methoxy- and methyl-benzene rings are 49.42 (13) and 42.62 (13)°, respectively; the dihedral angle between the benzene rings is 20.11 (11)°. Despite these angles of inclination, overall the molecule as a disk which contrasts the flat topology in the non-methoxy species (Attia et al., 2012). The methoxy group is co-planar with the benzene ring to which it is attached as seen in the value of the C16—O2—C13—C12 torsion angle of -173.1 (2)°. Within the urea moiety, the N—H atoms are anti to each other and the N1—H forms an intramolecular N—H···N hydrogen bond to define a S(5) loop, Table 1.

In the crystal structure, centrosymmetric dimers are formed via N—H···N(imidazolyl) hydrogen bonds and 18-membered {···HNNC3NCN}2 synthons, Fig. 2 and Table 1. These aggregates are connected into a three-dimensional architecture by CH···O(carbonyl) and (methylene)C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For background to the prevalence of epilepsy and epilepsy drugs, see: Sander & Shorvon (1987); Saxena & Saxena (1995); Edafiogho & Scott (1996). For the use of aryl semicarbazones as anti-convulsants, see: Aboul-Enein et al. (2012); Dimmock et al. (1993, 1995). For a related structure, see: Attia et al. (2012).

Experimental top

Acetic acid (2 drops) was added to a stirred solution of 3-(1H-imidazol-1-yl)-1-(4-methoxyphenyl)propan-1-one (0.23 g, 1 mmol) and N-(2-methylphenyl)hydrazinecarboxamide (0.17 g, 1 mmol) in absolute ethanol (10 ml). The reaction mixture was stirred at room temperature for 18 h. The solvent was concentrated under reduced pressure and the precipitated solid was collected by filtration. The collected solid was recrystallized from ethanol to give crystals of the title compound; Mp: 363–365 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were refined freely. The crystal studied was a non-merohedral twin with the minor component being 48.3 (1)%. The (6 9 0) reflection was omitted owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular dimer in (I) mediated by N—H···N hydrogen bonding, shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The N—H···N, C—H···O and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.
1-{(E)-[3-(1H-Imidazol-1-yl)-1-(4- methoxyphenyl)propylidene]amino}-3-(2-methylphenyl)urea top
Crystal data top
C21H23N5O2F(000) = 800
Mr = 377.44Dx = 1.324 Mg m3
Monoclinic, P21/cMelting point: 364 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.7798 (12) ÅCell parameters from 1904 reflections
b = 20.7750 (19) Åθ = 2.4–27.5°
c = 8.7652 (18) ŵ = 0.09 mm1
β = 105.318 (15)°T = 100 K
V = 1893.2 (5) Å3Prism, colourless
Z = 40.35 × 0.15 × 0.03 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7494 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4657 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.080
Detector resolution: 10.4041 pixels mm-1θmax = 27.7°, θmin = 2.6°
ω scanh = 1214
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2727
Tmin = 0.692, Tmax = 1.000l = 1111
15110 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1326P)2]
where P = (Fo2 + 2Fc2)/3
7494 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C21H23N5O2V = 1893.2 (5) Å3
Mr = 377.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7798 (12) ŵ = 0.09 mm1
b = 20.7750 (19) ÅT = 100 K
c = 8.7652 (18) Å0.35 × 0.15 × 0.03 mm
β = 105.318 (15)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7494 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4657 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 1.000Rint = 0.080
15110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.216H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.31 e Å3
7494 reflectionsΔρmin = 0.32 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84974 (15)0.35509 (7)0.8918 (2)0.0223 (4)
O21.35476 (15)0.69761 (8)0.6108 (2)0.0274 (4)
N11.05626 (18)0.39321 (9)0.9372 (2)0.0179 (5)
H1n1.091 (2)0.4294 (12)0.919 (3)0.024 (7)*
N20.88515 (19)0.45303 (9)0.7984 (3)0.0192 (5)
H2n0.803 (3)0.4582 (11)0.770 (3)0.020 (7)*
N30.97616 (17)0.49398 (9)0.7705 (3)0.0181 (4)
N40.61494 (17)0.54805 (8)0.3870 (2)0.0166 (4)
N50.40525 (18)0.53958 (9)0.2745 (3)0.0230 (5)
C11.1287 (2)0.34837 (10)1.0450 (3)0.0173 (5)
C21.0727 (2)0.30283 (10)1.1230 (3)0.0212 (5)
H2A0.98170.30031.10180.025*
C31.1496 (2)0.26135 (11)1.2310 (3)0.0261 (6)
H31.11110.23061.28450.031*
C41.2818 (2)0.26431 (11)1.2618 (3)0.0262 (6)
H41.33430.23571.33600.031*
C51.3371 (2)0.30935 (11)1.1838 (3)0.0249 (6)
H51.42810.31121.20560.030*
C61.2633 (2)0.35195 (11)1.0743 (3)0.0199 (5)
C71.3245 (2)0.40109 (12)0.9928 (3)0.0263 (6)
H7A1.29010.39670.87800.040*
H7B1.41780.39441.02140.040*
H7C1.30550.44431.02550.040*
C80.9257 (2)0.39659 (10)0.8786 (3)0.0172 (5)
C90.9418 (2)0.54534 (9)0.6881 (3)0.0156 (5)
C101.0481 (2)0.58629 (10)0.6644 (3)0.0170 (5)
C111.1687 (2)0.58495 (10)0.7738 (3)0.0171 (5)
H111.18240.55770.86380.020*
C121.2674 (2)0.62245 (11)0.7526 (3)0.0202 (5)
H121.34860.62120.82850.024*
C131.2499 (2)0.66239 (10)0.6209 (3)0.0191 (5)
C141.1307 (2)0.66451 (10)0.5107 (3)0.0206 (5)
H141.11750.69120.41970.025*
C151.0311 (2)0.62687 (10)0.5357 (3)0.0201 (5)
H150.94890.62920.46200.024*
C161.3358 (2)0.74429 (11)0.4871 (3)0.0291 (6)
H16A1.41760.76570.49120.044*
H16B1.27280.77630.50060.044*
H16C1.30400.72290.38450.044*
C170.8032 (2)0.56417 (10)0.6144 (3)0.0164 (5)
H17A0.79810.61120.59580.020*
H17B0.75100.55370.68860.020*
C180.7482 (2)0.52920 (10)0.4584 (3)0.0174 (5)
H18A0.80080.53930.38450.021*
H18B0.75230.48220.47720.021*
C190.5669 (2)0.60937 (11)0.3609 (3)0.0226 (6)
H190.61410.64830.38620.027*
C200.4397 (2)0.60370 (11)0.2921 (3)0.0235 (6)
H200.38210.63880.26040.028*
C210.5137 (2)0.50860 (11)0.3321 (3)0.0212 (6)
H210.52010.46300.33480.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (8)0.0256 (8)0.0198 (10)0.0039 (7)0.0030 (7)0.0045 (7)
O20.0192 (9)0.0309 (9)0.0319 (12)0.0056 (7)0.0066 (8)0.0031 (8)
N10.0172 (10)0.0152 (9)0.0202 (12)0.0024 (8)0.0031 (9)0.0063 (8)
N20.0131 (10)0.0224 (10)0.0207 (12)0.0005 (8)0.0019 (9)0.0047 (9)
N30.0165 (10)0.0220 (10)0.0162 (11)0.0015 (8)0.0051 (8)0.0004 (8)
N40.0145 (9)0.0216 (9)0.0127 (11)0.0001 (7)0.0020 (8)0.0002 (8)
N50.0172 (10)0.0275 (11)0.0224 (12)0.0039 (8)0.0019 (9)0.0017 (9)
C10.0215 (12)0.0173 (11)0.0106 (12)0.0054 (9)0.0000 (10)0.0029 (9)
C20.0232 (13)0.0213 (12)0.0179 (14)0.0024 (9)0.0030 (11)0.0015 (10)
C30.0367 (15)0.0209 (12)0.0192 (15)0.0027 (10)0.0050 (12)0.0019 (10)
C40.0346 (14)0.0200 (12)0.0194 (15)0.0101 (10)0.0012 (12)0.0027 (10)
C50.0213 (13)0.0306 (13)0.0198 (14)0.0063 (10)0.0003 (11)0.0065 (11)
C60.0221 (12)0.0229 (11)0.0139 (13)0.0017 (9)0.0032 (10)0.0041 (10)
C70.0155 (12)0.0370 (14)0.0252 (15)0.0038 (10)0.0031 (11)0.0067 (12)
C80.0206 (12)0.0212 (11)0.0104 (12)0.0026 (9)0.0051 (10)0.0021 (10)
C90.0168 (11)0.0154 (10)0.0136 (13)0.0004 (9)0.0018 (9)0.0018 (9)
C100.0154 (11)0.0184 (11)0.0164 (13)0.0018 (9)0.0027 (10)0.0051 (10)
C110.0203 (12)0.0164 (10)0.0137 (13)0.0026 (9)0.0029 (10)0.0013 (9)
C120.0131 (11)0.0256 (12)0.0198 (14)0.0044 (9)0.0009 (10)0.0051 (10)
C130.0160 (12)0.0190 (11)0.0236 (14)0.0009 (9)0.0073 (10)0.0054 (10)
C140.0219 (12)0.0206 (11)0.0182 (14)0.0002 (9)0.0036 (10)0.0028 (10)
C150.0148 (11)0.0216 (11)0.0213 (14)0.0028 (9)0.0000 (10)0.0015 (10)
C160.0287 (14)0.0244 (12)0.0383 (19)0.0028 (11)0.0158 (13)0.0034 (12)
C170.0138 (11)0.0195 (11)0.0161 (13)0.0040 (8)0.0043 (10)0.0007 (10)
C180.0142 (11)0.0203 (11)0.0171 (13)0.0028 (9)0.0031 (10)0.0008 (10)
C190.0221 (12)0.0188 (11)0.0263 (15)0.0020 (9)0.0050 (11)0.0015 (11)
C200.0212 (13)0.0247 (12)0.0233 (15)0.0077 (10)0.0034 (11)0.0034 (11)
C210.0182 (12)0.0247 (12)0.0189 (15)0.0008 (9)0.0017 (11)0.0016 (11)
Geometric parameters (Å, º) top
O1—C81.216 (3)C7—H7B0.9800
O2—C131.369 (3)C7—H7C0.9800
O2—C161.429 (3)C9—C101.485 (3)
N1—C81.366 (3)C9—C171.514 (3)
N1—C11.408 (3)C10—C151.381 (3)
N1—H1n0.87 (3)C10—C111.397 (3)
N2—N31.369 (3)C11—C121.371 (3)
N2—C81.378 (3)C11—H110.9500
N2—H2n0.87 (3)C12—C131.393 (3)
N3—C91.287 (3)C12—H120.9500
N4—C211.348 (3)C13—C141.389 (3)
N4—C191.371 (3)C14—C151.392 (3)
N4—C181.460 (3)C14—H140.9500
N5—C211.313 (3)C15—H150.9500
N5—C201.381 (3)C16—H16A0.9800
C1—C21.394 (3)C16—H16B0.9800
C1—C61.408 (3)C16—H16C0.9800
C2—C31.383 (3)C17—C181.523 (3)
C2—H2A0.9500C17—H17A0.9900
C3—C41.380 (4)C17—H17B0.9900
C3—H30.9500C18—H18A0.9900
C4—C51.384 (4)C18—H18B0.9900
C4—H40.9500C19—C201.349 (3)
C5—C61.390 (3)C19—H190.9500
C5—H50.9500C20—H200.9500
C6—C71.495 (3)C21—H210.9500
C7—H7A0.9800
C13—O2—C16117.18 (18)C11—C10—C9120.3 (2)
C8—N1—C1128.3 (2)C12—C11—C10120.7 (2)
C8—N1—H1n109.8 (16)C12—C11—H11119.6
C1—N1—H1n120.2 (17)C10—C11—H11119.6
N3—N2—C8118.31 (19)C11—C12—C13120.7 (2)
N3—N2—H2n126.9 (16)C11—C12—H12119.6
C8—N2—H2n114.7 (16)C13—C12—H12119.6
C9—N3—N2120.13 (19)O2—C13—C14124.5 (2)
C21—N4—C19105.71 (18)O2—C13—C12116.0 (2)
C21—N4—C18127.00 (18)C14—C13—C12119.6 (2)
C19—N4—C18127.29 (18)C13—C14—C15118.9 (2)
C21—N5—C20104.13 (19)C13—C14—H14120.6
C2—C1—C6120.4 (2)C15—C14—H14120.6
C2—C1—N1122.9 (2)C10—C15—C14122.0 (2)
C6—C1—N1116.7 (2)C10—C15—H15119.0
C3—C2—C1120.0 (2)C14—C15—H15119.0
C3—C2—H2A120.0O2—C16—H16A109.5
C1—C2—H2A120.0O2—C16—H16B109.5
C4—C3—C2120.5 (2)H16A—C16—H16B109.5
C4—C3—H3119.8O2—C16—H16C109.5
C2—C3—H3119.8H16A—C16—H16C109.5
C3—C4—C5119.4 (2)H16B—C16—H16C109.5
C3—C4—H4120.3C9—C17—C18111.45 (18)
C5—C4—H4120.3C9—C17—H17A109.3
C4—C5—C6122.0 (2)C18—C17—H17A109.3
C4—C5—H5119.0C9—C17—H17B109.3
C6—C5—H5119.0C18—C17—H17B109.3
C5—C6—C1117.8 (2)H17A—C17—H17B108.0
C5—C6—C7121.4 (2)N4—C18—C17111.24 (18)
C1—C6—C7120.8 (2)N4—C18—H18A109.4
C6—C7—H7A109.5C17—C18—H18A109.4
C6—C7—H7B109.5N4—C18—H18B109.4
H7A—C7—H7B109.5C17—C18—H18B109.4
C6—C7—H7C109.5H18A—C18—H18B108.0
H7A—C7—H7C109.5C20—C19—N4106.7 (2)
H7B—C7—H7C109.5C20—C19—H19126.6
O1—C8—N1125.5 (2)N4—C19—H19126.6
O1—C8—N2121.4 (2)C19—C20—N5110.2 (2)
N1—C8—N2113.09 (19)C19—C20—H20124.9
N3—C9—C10115.8 (2)N5—C20—H20124.9
N3—C9—C17124.0 (2)N5—C21—N4113.2 (2)
C10—C9—C17120.22 (19)N5—C21—H21123.4
C15—C10—C11118.1 (2)N4—C21—H21123.4
C15—C10—C9121.5 (2)
C8—N2—N3—C9176.0 (2)C15—C10—C11—C120.7 (3)
C8—N1—C1—C27.1 (4)C9—C10—C11—C12179.8 (2)
C8—N1—C1—C6174.0 (2)C10—C11—C12—C130.5 (3)
C6—C1—C2—C30.8 (4)C16—O2—C13—C146.7 (3)
N1—C1—C2—C3178.1 (2)C16—O2—C13—C12173.1 (2)
C1—C2—C3—C40.5 (4)C11—C12—C13—O2179.7 (2)
C2—C3—C4—C50.2 (4)C11—C12—C13—C140.5 (3)
C3—C4—C5—C60.1 (4)O2—C13—C14—C15179.2 (2)
C4—C5—C6—C10.4 (4)C12—C13—C14—C150.6 (3)
C4—C5—C6—C7179.0 (2)C11—C10—C15—C141.8 (3)
C2—C1—C6—C50.7 (3)C9—C10—C15—C14178.7 (2)
N1—C1—C6—C5178.2 (2)C13—C14—C15—C101.8 (4)
C2—C1—C6—C7179.3 (2)N3—C9—C17—C1881.8 (3)
N1—C1—C6—C70.3 (3)C10—C9—C17—C1896.8 (2)
C1—N1—C8—O111.9 (4)C21—N4—C18—C17130.0 (2)
C1—N1—C8—N2168.7 (2)C19—N4—C18—C1750.5 (3)
N3—N2—C8—O1171.8 (2)C9—C17—C18—N4179.38 (18)
N3—N2—C8—N17.6 (3)C21—N4—C19—C200.1 (3)
N2—N3—C9—C10179.8 (2)C18—N4—C19—C20179.7 (2)
N2—N3—C9—C171.1 (4)N4—C19—C20—N50.3 (3)
N3—C9—C10—C15154.6 (2)C21—N5—C20—C190.6 (3)
C17—C9—C10—C1524.1 (3)C20—N5—C21—N40.7 (3)
N3—C9—C10—C1125.8 (3)C19—N4—C21—N50.5 (3)
C17—C9—C10—C11155.4 (2)C18—N4—C21—N5179.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.87 (3)2.04 (2)2.568 (3)118 (2)
N2—H2n···N5i0.87 (3)2.17 (3)3.029 (3)171 (2)
C16—H16B···O1ii0.982.443.398 (3)165
C20—H20···O1i0.952.513.226 (3)133
C17—H17A···Cg2iii0.992.803.391 (3)119
C18—H18B···Cg3iv0.992.783.569 (2)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+1, z+2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H23N5O2
Mr377.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7798 (12), 20.7750 (19), 8.7652 (18)
β (°) 105.318 (15)
V3)1893.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.15 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.692, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15110, 7494, 4657
Rint0.080
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.216, 0.98
No. of reflections7494
No. of parameters263
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.87 (3)2.04 (2)2.568 (3)118 (2)
N2—H2n···N5i0.87 (3)2.17 (3)3.029 (3)171 (2)
C16—H16B···O1ii0.982.443.398 (3)165
C20—H20···O1i0.952.513.226 (3)133
C17—H17A···Cg2iii0.992.803.391 (3)119
C18—H18B···Cg3iv0.992.783.569 (2)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y+1, z+2; (iv) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: mattia@ksu.edu.sa.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. & El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360–369.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAttia, M. I., Aboul-Enein, M. N., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1848–o1849.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Duffy, M. S. & Reid, R. S. (1993). J. Med. Chem. 36, 2243–2252.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationDimmock, J. R., Sidhu, K. K., Tumber, S. D., Basran, S. K., Chen, M. & Quail, J. W. (1995). Eur. J. Med. Chem. 30, 287–301.  CrossRef CAS Web of Science Google Scholar
First citationEdafiogho, I. O. & Scott, K. R. (1996). Burgers Medicinal Chemistry and Drug Discovery, edited by M. E. Wolf, p. 175. New York: John Wiley and Sons Inc.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSander, J. W. A. S. & Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829–839.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSaxena, A. K. & Saxena, M. (1995). Prog. Drug Res. 44, 185–291.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1799-o1800
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds