organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­phen­yl)acetic acid

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 24 May 2012; accepted 25 May 2012; online 31 May 2012)

In the title compound, C8H7ClO2, the carboxyl group forms a dihedral angle of 74.83 (9)° with the benzene ring plane. In the crystal, mol­ecules are linked into inversion dimers by pairs of O—H⋯O hydrogen bonds. The dimers are linked into layers parallel to the bc plane by weak C—H⋯O inter­actions.

Related literature

For applications of phenyl­acetic acids, see: Castellari & Ottani (1995[Castellari, C. & Ottani, S. (1995). Acta Cryst. C51, 2612-2615.]); Deshpande et al. (2008[Deshpande, P. P., Nanduri, V. B., Pullockaran, A., Christie, H., Mueller, R. H. & Patel, R. N. (2008). J. Ind. Microbiol. Biotechnol. 35, 901-906.]); Hata et al. (1986[Hata, T., Sato, S. & Tamura, C. (1986). Acta Cryst. C42, 452-454.]). For the crystal structure of isostructural 2-(2-bromo­phen­yl)acetic acid, see: Kant et al. (2012[Kant, R., Kapoor, K. & Narayana, B. (2012). Acta Cryst. E68, o1704.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClO2

  • Mr = 170.59

  • Monoclinic, P 21 /c

  • a = 9.1473 (7) Å

  • b = 5.8265 (3) Å

  • c = 15.4299 (7) Å

  • β = 101.155 (5)°

  • V = 806.83 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.748, Tmax = 1.000

  • 9367 measured reflections

  • 1583 independent reflections

  • 1173 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.06

  • 1583 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O9i 0.82 1.82 2.639 (4) 173
C6—H6⋯O9ii 0.93 2.57 3.469 (4) 163
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of phenyl acetic acids are used as ingredients in perfume to provide honey like odour, for the preparation of a nonsteroidal anti-inflammatory drug like diclofenac (Hata et al., 1986; Castellari & Ottani, 1995), and as intermediate compounds for the synthesis of heterocyclic compounds (Deshpande et al., 2008). In continuation of our work on substituted phenylacetic acid (Kant et al., 2012), we report the crystal structure of a new derivative, 2-(2-chlorophenyl)acetic acid (I). The title compound is closely isostructural with its bromo analogue (Kant et al., 2012).

Related literature top

For applications of phenylacetic acids , see: Castellari & Ottani (1995); Deshpande et al. (2008); Hata et al. (1986). For the crystal structure of isostructural 2-(2-bromophenyl)acetic acid, see: Kant et al. (2012).

Experimental top

The title compound was purchased from the Spectrochem Ltd. and single crystal was grown from ethyl acetate and toluene (1:1) mixture by slow evaporation method (m.p. 366–369 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with O—H distances of 0.82 Å and C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C/O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Projection of the crystal packing along the b axis. Hydrogen atoms are omitted for clarity and hydrogen bonds are shown with dashed lines.
2-(2-Chlorophenyl)acetic acid top
Crystal data top
C8H7ClO2F(000) = 352
Mr = 170.59Dx = 1.404 Mg m3
Monoclinic, P21/cMelting point = 369–366 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.1473 (7) ÅCell parameters from 3981 reflections
b = 5.8265 (3) Åθ = 3.5–29.1°
c = 15.4299 (7) ŵ = 0.42 mm1
β = 101.155 (5)°T = 293 K
V = 806.83 (8) Å3Block, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1583 independent reflections
Radiation source: fine-focus sealed tube1173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.8°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 77
Tmin = 0.748, Tmax = 1.000l = 1919
9367 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.4607P]
where P = (Fo2 + 2Fc2)/3
1583 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C8H7ClO2V = 806.83 (8) Å3
Mr = 170.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1473 (7) ŵ = 0.42 mm1
b = 5.8265 (3) ÅT = 293 K
c = 15.4299 (7) Å0.3 × 0.2 × 0.2 mm
β = 101.155 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1583 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1173 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 1.000Rint = 0.045
9367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
1583 reflectionsΔρmin = 0.33 e Å3
100 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58539 (10)0.25918 (15)0.57120 (5)0.0721 (3)
C10.7450 (3)0.0180 (4)0.70745 (16)0.0451 (6)
C20.6591 (3)0.2111 (4)0.68252 (16)0.0447 (6)
C30.6269 (3)0.3678 (5)0.74270 (18)0.0516 (7)
H30.56910.49620.72380.062*
C40.6811 (4)0.3324 (5)0.8313 (2)0.0599 (8)
H40.65990.43690.87270.072*
C50.7665 (4)0.1427 (6)0.85832 (19)0.0657 (9)
H50.80280.11800.91820.079*
C60.7986 (4)0.0111 (5)0.79697 (19)0.0602 (8)
H60.85770.13800.81620.072*
C70.7754 (4)0.1586 (5)0.6417 (2)0.0604 (8)
H7A0.82190.29080.67400.073*
H7B0.68080.20860.60700.073*
C80.8723 (3)0.0803 (5)0.57996 (18)0.0527 (7)
O90.9496 (2)0.0930 (4)0.59199 (13)0.0672 (6)
O100.8700 (3)0.2177 (4)0.51387 (14)0.0729 (7)
H100.92450.16740.48200.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0835 (7)0.0807 (6)0.0476 (4)0.0019 (4)0.0015 (4)0.0124 (4)
C10.0496 (16)0.0395 (13)0.0501 (14)0.0030 (11)0.0193 (12)0.0039 (11)
C20.0466 (15)0.0484 (15)0.0403 (12)0.0089 (12)0.0117 (11)0.0049 (11)
C30.0537 (17)0.0421 (14)0.0629 (16)0.0005 (12)0.0206 (13)0.0032 (13)
C40.070 (2)0.0558 (17)0.0571 (17)0.0072 (15)0.0218 (15)0.0096 (14)
C50.076 (2)0.077 (2)0.0423 (14)0.0015 (18)0.0081 (14)0.0044 (15)
C60.065 (2)0.0565 (17)0.0597 (17)0.0089 (15)0.0142 (14)0.0149 (14)
C70.076 (2)0.0430 (15)0.0692 (18)0.0054 (15)0.0318 (16)0.0039 (14)
C80.0549 (17)0.0486 (15)0.0576 (16)0.0054 (14)0.0184 (13)0.0096 (13)
O90.0748 (15)0.0647 (13)0.0710 (13)0.0229 (12)0.0362 (11)0.0244 (11)
O100.0876 (17)0.0699 (14)0.0708 (14)0.0292 (12)0.0393 (12)0.0291 (11)
Geometric parameters (Å, º) top
Cl1—C21.742 (3)C5—C61.376 (4)
C1—C21.384 (4)C5—H50.9300
C1—C61.384 (4)C6—H60.9300
C1—C71.508 (4)C7—C81.492 (4)
C2—C31.374 (4)C7—H7A0.9700
C3—C41.377 (4)C7—H7B0.9700
C3—H30.9300C8—O91.227 (3)
C4—C51.370 (5)C8—O101.293 (3)
C4—H40.9300O10—H100.8200
C2—C1—C6116.7 (2)C6—C5—H5120.0
C2—C1—C7122.4 (2)C5—C6—C1121.7 (3)
C6—C1—C7120.8 (3)C5—C6—H6119.1
C3—C2—C1122.5 (2)C1—C6—H6119.1
C3—C2—Cl1117.8 (2)C8—C7—C1115.5 (2)
C1—C2—Cl1119.7 (2)C8—C7—H7A108.4
C2—C3—C4119.2 (3)C1—C7—H7A108.4
C2—C3—H3120.4C8—C7—H7B108.4
C4—C3—H3120.4C1—C7—H7B108.4
C5—C4—C3119.8 (3)H7A—C7—H7B107.5
C5—C4—H4120.1O9—C8—O10123.3 (3)
C3—C4—H4120.1O9—C8—C7123.5 (2)
C4—C5—C6120.1 (3)O10—C8—C7113.2 (2)
C4—C5—H5120.0C8—O10—H10109.5
C6—C1—C2—C30.2 (4)C4—C5—C6—C10.9 (5)
C7—C1—C2—C3177.6 (3)C2—C1—C6—C50.8 (4)
C6—C1—C2—Cl1179.2 (2)C7—C1—C6—C5177.0 (3)
C7—C1—C2—Cl11.4 (4)C2—C1—C7—C868.3 (4)
C1—C2—C3—C40.3 (4)C6—C1—C7—C8114.0 (3)
Cl1—C2—C3—C4178.8 (2)C1—C7—C8—O915.7 (5)
C2—C3—C4—C50.2 (4)C1—C7—C8—O10166.3 (3)
C3—C4—C5—C60.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O9i0.821.822.639 (4)173
C6—H6···O9ii0.932.573.469 (4)163
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H7ClO2
Mr170.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1473 (7), 5.8265 (3), 15.4299 (7)
β (°) 101.155 (5)
V3)806.83 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.748, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9367, 1583, 1173
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.06
No. of reflections1583
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O9i0.821.822.639 (4)173
C6—H6···O9ii0.932.573.469 (4)163
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003 and the University of Jammu, Jammu, India, for financial support. BN thanks the UGC for financial assistance through the BSR one-time grant for the purchase of chemicals.

References

First citationCastellari, C. & Ottani, S. (1995). Acta Cryst. C51, 2612–2615.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDeshpande, P. P., Nanduri, V. B., Pullockaran, A., Christie, H., Mueller, R. H. & Patel, R. N. (2008). J. Ind. Microbiol. Biotechnol. 35, 901–906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHata, T., Sato, S. & Tamura, C. (1986). Acta Cryst. C42, 452–454.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKant, R., Kapoor, K. & Narayana, B. (2012). Acta Cryst. E68, o1704.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds