organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl­piperidinium) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 24 April 2012; accepted 4 May 2012; online 16 May 2012)

In the structure of the title mol­ecular salt, 2C6H14N+·C10H6O6S22−, the asymmetric unit consists of one 2-methyl­piperidinium cation and one-half of a naphthalene-1,5-disulfonate anion; the anion lies across a centre of symmetry. In the crystal, the cations and anions are linked through N—H⋯O hydrogen bonds, forming a two-dimensional network.

Related literature

For general background on ferroelectric organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H14N+·C10H6O6S22−

  • Mr = 486.63

  • Monoclinic, P 21 /c

  • a = 12.040 (2) Å

  • b = 8.8133 (18) Å

  • c = 12.715 (3) Å

  • β = 112.62 (3)°

  • V = 1245.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.32 × 0.27 × 0.22 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.924, Tmax = 0.947

  • 12383 measured reflections

  • 2814 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.069

  • Standard reflections: ?

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.134

  • S = 1.04

  • 2814 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.90 1.91 2.795 (3) 169
N1—H1A⋯O1i 0.90 1.93 2.820 (3) 169
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was synthesized to assess its ferroelectric properties by dielectric measurements as a function of temperature (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). In the range from 190K to near its melting point (m.p. >370K), no dielectric anomaly was observed.

A view of (I) is shown in Fig.1. Two intermolecular N–H···O hydrogen bonds form a two-dimensional network, Table, 1, Fig. 2.

Related literature top

For general background on ferroelectric organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

A mixture of 2-methy piperidine (0.98 g, 10 mmol), naphthalene-1,5-disulfonic acid (2.5 g, 10 mmol) in water was stirred for several days at ambient temperature, colourless crystals were obtained.

Refinement top

Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.98Å and N–H = 0.90Å, and with Uiso(H)=1.2Ueq(C or N), 1.5 Uiso(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level. Symmetry code for A: 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Packing diagram of the title compound, hydrogen bonds are shown as dashed lines.
Bis(2-methylpiperidinium) naphthalene-1,5-disulfonate top
Crystal data top
2C6H14N+·C10H6O6S22F(000) = 520
Mr = 486.63Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2814 reflections
a = 12.040 (2) Åθ = 3.1–27.5°
b = 8.8133 (18) ŵ = 0.25 mm1
c = 12.715 (3) ÅT = 293 K
β = 112.62 (3)°Block, colourless
V = 1245.4 (4) Å30.32 × 0.27 × 0.22 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2814 independent reflections
Radiation source: fine-focus sealed tube1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1515
Tmin = 0.924, Tmax = 0.947k = 1111
12383 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.481P]
where P = (Fo2 + 2Fc2)/3
2814 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C6H14N+·C10H6O6S22V = 1245.4 (4) Å3
Mr = 486.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.040 (2) ŵ = 0.25 mm1
b = 8.8133 (18) ÅT = 293 K
c = 12.715 (3) Å0.32 × 0.27 × 0.22 mm
β = 112.62 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2814 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1942 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.947Rint = 0.069
12383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2814 reflectionsΔρmin = 0.28 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78457 (5)0.59654 (7)0.69286 (5)0.0339 (2)
O10.88140 (15)0.6629 (2)0.66486 (16)0.0499 (5)
O20.81475 (16)0.4419 (2)0.73778 (15)0.0452 (5)
O30.74714 (16)0.6921 (2)0.76559 (16)0.0508 (5)
C70.6587 (2)0.5777 (3)0.5596 (2)0.0306 (5)
C80.6710 (2)0.6257 (3)0.4618 (2)0.0376 (6)
H80.74260.67060.46630.045*
C90.5757 (2)0.6074 (3)0.3545 (2)0.0439 (7)
H90.58480.64140.28900.053*
C100.5479 (2)0.5101 (3)0.55522 (19)0.0286 (5)
C110.5297 (2)0.4597 (3)0.6538 (2)0.0388 (6)
H110.59070.47270.72530.047*
N10.88441 (18)0.1722 (2)0.66473 (18)0.0395 (5)
H1A0.96170.16140.71270.047*
H1B0.85860.26280.67900.047*
C10.8782 (2)0.1714 (3)0.5439 (2)0.0475 (7)
H10.90760.07320.52920.057*
C20.7463 (3)0.1887 (3)0.4635 (2)0.0509 (8)
H2A0.71760.28770.47500.061*
H2B0.74040.18340.38540.061*
C30.6666 (3)0.0666 (4)0.4827 (3)0.0713 (10)
H3A0.68880.03170.46240.086*
H3B0.58330.08600.43410.086*
C40.6799 (3)0.0642 (4)0.6077 (3)0.0668 (10)
H4A0.64680.15690.62480.080*
H4B0.63450.02040.61960.080*
C50.8109 (3)0.0494 (3)0.6881 (3)0.0552 (8)
H5A0.81720.05680.76630.066*
H5B0.84150.04900.67800.066*
C60.9591 (3)0.2953 (4)0.5302 (3)0.0726 (10)
H6A0.92760.39270.53830.109*
H6B0.96230.28790.45610.109*
H6C1.03870.28380.58750.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0244 (3)0.0376 (4)0.0378 (4)0.0008 (3)0.0099 (2)0.0067 (3)
O10.0283 (9)0.0686 (14)0.0508 (12)0.0130 (9)0.0130 (8)0.0050 (10)
O20.0429 (11)0.0441 (11)0.0426 (11)0.0092 (8)0.0099 (8)0.0024 (8)
O30.0425 (11)0.0563 (13)0.0549 (12)0.0018 (9)0.0201 (9)0.0229 (10)
C70.0239 (12)0.0284 (12)0.0400 (14)0.0010 (10)0.0128 (10)0.0001 (10)
C80.0287 (13)0.0395 (15)0.0466 (16)0.0077 (11)0.0166 (12)0.0011 (12)
C90.0392 (14)0.0593 (18)0.0380 (15)0.0038 (13)0.0200 (12)0.0103 (13)
C100.0260 (12)0.0274 (12)0.0318 (13)0.0005 (10)0.0103 (9)0.0013 (10)
C110.0304 (13)0.0516 (16)0.0307 (14)0.0030 (12)0.0077 (11)0.0052 (11)
N10.0324 (11)0.0387 (13)0.0425 (13)0.0040 (9)0.0088 (10)0.0010 (10)
C10.0460 (16)0.0509 (18)0.0490 (17)0.0072 (13)0.0221 (14)0.0056 (13)
C20.0547 (18)0.0561 (19)0.0350 (16)0.0007 (15)0.0097 (13)0.0042 (13)
C30.061 (2)0.074 (2)0.061 (2)0.0227 (18)0.0029 (17)0.0099 (18)
C40.0486 (19)0.075 (2)0.070 (2)0.0180 (17)0.0150 (17)0.0046 (17)
C50.0578 (19)0.0477 (18)0.0576 (19)0.0046 (14)0.0196 (16)0.0110 (14)
C60.055 (2)0.102 (3)0.064 (2)0.0095 (19)0.0280 (17)0.017 (2)
Geometric parameters (Å, º) top
S1—O31.4452 (18)C1—C61.518 (4)
S1—O11.4652 (18)C1—C21.530 (4)
S1—O21.4687 (19)C1—H10.9800
S1—C71.794 (3)C2—C31.523 (4)
C7—C81.374 (3)C2—H2A0.9700
C7—C101.442 (3)C2—H2B0.9700
C8—C91.414 (4)C3—C41.535 (5)
C8—H80.9300C3—H3A0.9700
C9—C11i1.367 (3)C3—H3B0.9700
C9—H90.9300C4—C51.519 (4)
C10—C111.424 (3)C4—H4A0.9700
C10—C10i1.445 (4)C4—H4B0.9700
C11—C9i1.367 (3)C5—H5A0.9700
C11—H110.9300C5—H5B0.9700
N1—C51.498 (3)C6—H6A0.9600
N1—C11.509 (3)C6—H6B0.9600
N1—H1A0.90C6—H6C0.9600
N1—H1B0.90
O3—S1—O1113.33 (12)C2—C1—H1108.6
O3—S1—O2112.56 (12)C3—C2—C1112.2 (2)
O1—S1—O2111.33 (12)C3—C2—H2A109.2
O3—S1—C7107.48 (11)C1—C2—H2A109.2
O1—S1—C7105.63 (11)C3—C2—H2B109.2
O2—S1—C7105.90 (11)C1—C2—H2B109.2
C8—C7—C10120.8 (2)H2A—C2—H2B107.9
C8—C7—S1118.69 (18)C2—C3—C4110.8 (2)
C10—C7—S1120.49 (18)C2—C3—H3A109.5
C7—C8—C9120.6 (2)C4—C3—H3A109.5
C7—C8—H8119.7C2—C3—H3B109.5
C9—C8—H8119.7C4—C3—H3B109.5
C11i—C9—C8120.6 (2)H3A—C3—H3B108.1
C11i—C9—H9119.7C5—C4—C3111.5 (3)
C8—C9—H9119.7C5—C4—H4A109.3
C11—C10—C7123.2 (2)C3—C4—H4A109.3
C11—C10—C10i118.8 (3)C5—C4—H4B109.3
C7—C10—C10i118.0 (3)C3—C4—H4B109.3
C9i—C11—C10121.3 (2)H4A—C4—H4B108.0
C9i—C11—H11119.3N1—C5—C4110.1 (2)
C10—C11—H11119.3N1—C5—H5A109.6
C5—N1—C1113.4 (2)C4—C5—H5A109.6
C5—N1—H1A109.0N1—C5—H5B109.6
C1—N1—H1A108.8C4—C5—H5B109.6
C5—N1—H1B108.9H5A—C5—H5B108.1
C1—N1—H1B108.9C1—C6—H6A109.5
H1A—N1—H1B107.7C1—C6—H6B109.5
N1—C1—C6109.3 (2)H6A—C6—H6B109.5
N1—C1—C2108.2 (2)C1—C6—H6C109.5
C6—C1—C2113.5 (3)H6A—C6—H6C109.5
N1—C1—H1108.6H6B—C6—H6C109.5
C6—C1—H1108.6
O3—S1—C7—C8120.4 (2)S1—C7—C10—C10i176.5 (2)
O1—S1—C7—C80.8 (2)C7—C10—C11—C9i178.3 (2)
O2—S1—C7—C8119.0 (2)C10i—C10—C11—C9i0.4 (4)
O3—S1—C7—C1061.0 (2)C5—N1—C1—C6177.8 (2)
O1—S1—C7—C10177.70 (18)C5—N1—C1—C258.2 (3)
O2—S1—C7—C1059.5 (2)N1—C1—C2—C356.1 (3)
C10—C7—C8—C91.1 (4)C6—C1—C2—C3177.6 (3)
S1—C7—C8—C9177.49 (19)C1—C2—C3—C455.1 (4)
C7—C8—C9—C11i0.7 (4)C2—C3—C4—C553.6 (4)
C8—C7—C10—C11179.3 (2)C1—N1—C5—C458.2 (3)
S1—C7—C10—C112.1 (3)C3—C4—C5—N154.5 (4)
C8—C7—C10—C10i2.0 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.901.912.795 (3)169
N1—H1A···O1ii0.901.932.820 (3)169
Symmetry code: (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula2C6H14N+·C10H6O6S22
Mr486.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.040 (2), 8.8133 (18), 12.715 (3)
β (°) 112.62 (3)
V3)1245.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.32 × 0.27 × 0.22
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.924, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
12383, 2814, 1942
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.134, 1.04
No. of reflections2814
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.901.912.795 (3)169
N1—H1A···O1i0.901.932.820 (3)169
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds