organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-methyl-6-(propan-2-yl­amino)-4-sulfanyl­­idene-3H,11H-pyrimido[1,6-c]quinazoline-1-carboxyl­ate

aCollege of Science, Naval University of Engineering, Wuhan 430033, People's Republic of China, and bInstitute of Medicinal Chemistry, Hubei University of Medicine, Shi Yan 442000, People's Republic of China
*Correspondence e-mail: meirwang@126.com

(Received 27 March 2012; accepted 3 May 2012; online 19 May 2012)

The title compound, C18H22N4O2S, contains a substituted pyrimidine ring fused to both a benzene ring and a substituted thioxopyrimidine ring. The pyrimidine and thioxopyrimidine rings adopt distorted chair conformations. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯S and N—H⋯O hydrogen bonds to generate centrosymmetric R22(8) and R22(16) loops, respectively. This combination leads to [100] chains of mol­ecules.

Related literature

For further synthetic details, see: Li et al. (2007[Li, H. X., Xie, C., Ding, M. W., Liu, Z. M. & Yang, G. F. (2007). Synlett, pp. 2280-2282.], 2008[Li, H. X., Sun, Y. & Ding, M. W. (2008). Synth. Commun. 38, 4328-4336.]); Huang et al. (2009[Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831-834.]); Zeng et al. (2010[Zeng, X. H., Liu, M., Ding, M. W. & He, H. W. (2010). Synth. Commun. 40, 1453-1460.]). For a related structure, see: Li et al. (2010[Li, W. J., Liu, S., He, P. & Ding, M. W. (2010). Tetrahedron, 66, 8151-8159.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N4O2S

  • Mr = 358.46

  • Monoclinic, P 21 /n

  • a = 9.4128 (3) Å

  • b = 10.5636 (5) Å

  • c = 19.2052 (6) Å

  • β = 102.347 (1)°

  • V = 1865.46 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.962

  • 12093 measured reflections

  • 3857 independent reflections

  • 3014 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.139

  • S = 1.03

  • 3857 reflections

  • 236 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 (1) 2.26 (1) 3.102 (2) 165 (2)
N4—H4A⋯S1ii 0.87 (1) 2.42 (1) 3.2804 (15) 172 (2)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, we have been engaged in the preparation of heterocyclic derivatives using the aza-Wittig reaction (Li et al. 2007, 2008; Huang et al. 2009; Li et al. 2010; Zeng et al., 2010). We present here the crystal structure of the title compound (Fig. 1). The molecule contains a substituted pyrimidine ring fused to a benzene ring and a substituted thioxopyrimidine ring. The centre ring of pyrimidine moiety adopts a distored chair conformation [ϕ = 208.8 (2)° and θ = 68.85 (19)°, Puckering Amplitude = 0.5502 (17)Å], and the substituted thioxopyrimidine ring also show a distorted chair form [ϕ = 214.6 (4)° and θ = 113.9 (3)°, Puckering Amplitude = 0.3827 (17)Å] (Cremer & Pople, 1975). In the crystal, there are N—H···O and N—H···S (Table 1) hydrogen bonds.

Related literature top

For further synthetic details, see: Li et al. (2007, 2008); Huang et al. (2009); Zeng et al. (2010); For a related structure, see: Li et al. (2010). For related literature [on what subject?], see: Cremer & Pople (1975).

Experimental top

To a solution of iminophosphorane prepared according to Li et al. (2010) (0.55 g, 1 mmol) in CH3CN (10 mL) was added phenylisocyanate (0.12 g, 1 mmol) under nitrogen at room temperature. After stirred for 2 h at room temperature, K2CO3 (0.014 g,0.1 mmol) was added and the mixture was stirred for 1 h. The solvent was removed off under reduced pressure and the residue was recrystallized from methylene dichloride and ethanol to give the title compound (I) in yield of 85% (m.p. 490 K). Colourless blocks were obtained from a dichloromethane solution at room temperature.

Refinement top

The H atoms attached to atoms N2 and N4 was located in a difference Fourier map and allowed to ride on their parent atom with a restraint of N—H = 0.86 Å. Other H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.96–0.97 Å, and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule showing displacement ellipsoids drawn at the 50% probability level.
Ethyl 2-methyl-6-(propan-2-ylamino)-4-sulfanylidene-3H,11H- pyrimido[1,6-c]quinazoline-1-carboxylate top
Crystal data top
C18H22N4O2SF(000) = 760.0
Mr = 358.46Dx = 1.288 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4329 reflections
a = 9.4128 (3) Åθ = 2.2–27.7°
b = 10.5636 (5) ŵ = 0.19 mm1
c = 19.2052 (6) ÅT = 298 K
β = 102.347 (1)°Block, colorless
V = 1865.46 (12) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3857 independent reflections
Radiation source: fine-focus sealed tube3014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.955, Tmax = 0.962k = 1310
12093 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.1069P]
where P = (Fo2 + 2Fc2)/3
3857 reflections(Δ/σ)max = 0.025
236 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H22N4O2SV = 1865.46 (12) Å3
Mr = 358.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4128 (3) ŵ = 0.19 mm1
b = 10.5636 (5) ÅT = 298 K
c = 19.2052 (6) Å0.30 × 0.20 × 0.20 mm
β = 102.347 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3857 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3014 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.962Rint = 0.076
12093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
3857 reflectionsΔρmin = 0.27 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09011 (18)0.72990 (17)0.84262 (9)0.0364 (4)
C20.0719 (2)0.67844 (18)0.77505 (10)0.0462 (5)
H20.02940.59910.76560.055*
C30.1170 (3)0.7450 (2)0.72128 (10)0.0570 (6)
H30.10420.71070.67580.068*
C40.1809 (3)0.8623 (2)0.73568 (11)0.0558 (6)
H40.21200.90670.69980.067*
C50.1991 (2)0.91431 (19)0.80297 (10)0.0494 (5)
H50.24220.99350.81200.059*
C60.1535 (2)0.84940 (17)0.85729 (9)0.0380 (4)
C70.17531 (19)0.83292 (16)0.97816 (9)0.0348 (4)
C80.04635 (19)0.66650 (16)0.90571 (9)0.0345 (4)
H80.04370.70610.91260.041*
C90.2171 (2)1.00033 (18)1.06939 (10)0.0466 (5)
H90.14701.05591.03870.056*
C100.1933 (3)1.0103 (2)1.14433 (12)0.0612 (6)
H10A0.09630.98331.14530.092*
H10B0.20631.09651.16010.092*
H10C0.26210.95731.17530.092*
C110.3679 (3)1.0396 (2)1.06328 (15)0.0795 (8)
H11A0.43850.98971.09530.119*
H11B0.38231.12751.07540.119*
H11C0.37911.02651.01530.119*
C120.28831 (19)0.62791 (16)0.97962 (9)0.0343 (4)
C130.13802 (19)0.44969 (16)0.92654 (9)0.0363 (4)
C140.02360 (19)0.52521 (16)0.90196 (9)0.0355 (4)
C150.1435 (2)0.30767 (17)0.92606 (12)0.0502 (5)
H15A0.11030.27530.96650.075*
H15B0.24170.28040.92840.075*
H15C0.08210.27650.88300.075*
C160.1233 (2)0.47530 (18)0.87161 (9)0.0404 (4)
C170.3692 (2)0.5353 (2)0.82596 (12)0.0552 (5)
H17A0.41000.49050.86120.066*
H17B0.37450.48060.78490.066*
C180.4504 (3)0.6539 (3)0.8048 (2)0.0979 (11)
H18A0.44310.70770.84570.147*
H18B0.55080.63450.78560.147*
H18C0.41010.69660.76930.147*
S10.44958 (5)0.68615 (5)1.01900 (3)0.04898 (19)
N10.16807 (17)0.90727 (14)0.92474 (8)0.0399 (4)
N20.18611 (17)0.86974 (14)1.04561 (8)0.0387 (4)
H2A0.191 (2)0.8115 (14)1.0774 (8)0.046*
N30.16359 (15)0.69732 (13)0.96840 (7)0.0326 (3)
N40.27056 (16)0.50620 (14)0.95704 (8)0.0393 (4)
H4A0.3503 (15)0.4619 (16)0.9646 (10)0.047*
O10.21898 (14)0.57011 (13)0.85569 (8)0.0525 (4)
O20.15658 (16)0.36556 (14)0.86187 (8)0.0569 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0333 (9)0.0385 (10)0.0363 (9)0.0059 (8)0.0045 (7)0.0066 (7)
C20.0516 (12)0.0455 (11)0.0392 (10)0.0030 (9)0.0045 (9)0.0016 (8)
C30.0744 (15)0.0612 (14)0.0352 (10)0.0142 (12)0.0113 (10)0.0055 (9)
C40.0695 (15)0.0559 (13)0.0460 (11)0.0109 (11)0.0215 (10)0.0180 (10)
C50.0567 (13)0.0425 (11)0.0509 (11)0.0035 (9)0.0163 (10)0.0131 (9)
C60.0387 (10)0.0348 (10)0.0401 (9)0.0068 (8)0.0077 (8)0.0051 (7)
C70.0306 (9)0.0329 (9)0.0409 (9)0.0019 (7)0.0077 (7)0.0004 (7)
C80.0298 (8)0.0366 (10)0.0357 (8)0.0006 (7)0.0041 (7)0.0004 (7)
C90.0554 (12)0.0361 (10)0.0481 (11)0.0040 (9)0.0107 (9)0.0051 (8)
C100.0690 (15)0.0603 (14)0.0544 (12)0.0072 (12)0.0140 (11)0.0168 (10)
C110.0865 (19)0.0674 (17)0.0933 (19)0.0312 (14)0.0387 (16)0.0277 (14)
C120.0369 (9)0.0324 (9)0.0338 (8)0.0020 (7)0.0077 (7)0.0034 (7)
C130.0379 (10)0.0346 (9)0.0379 (9)0.0025 (7)0.0113 (7)0.0015 (7)
C140.0362 (9)0.0358 (10)0.0348 (9)0.0028 (7)0.0085 (7)0.0006 (7)
C150.0483 (12)0.0375 (11)0.0662 (13)0.0022 (9)0.0150 (10)0.0009 (9)
C160.0414 (10)0.0440 (11)0.0356 (9)0.0047 (9)0.0074 (8)0.0039 (8)
C170.0373 (11)0.0642 (14)0.0587 (12)0.0093 (10)0.0021 (9)0.0010 (10)
C180.0541 (16)0.0719 (18)0.148 (3)0.0067 (13)0.0231 (17)0.0301 (18)
S10.0332 (3)0.0401 (3)0.0684 (4)0.00183 (19)0.0007 (2)0.0082 (2)
N10.0450 (9)0.0325 (8)0.0420 (8)0.0024 (7)0.0088 (7)0.0039 (6)
N20.0451 (9)0.0327 (8)0.0389 (8)0.0017 (7)0.0104 (7)0.0004 (6)
N30.0310 (7)0.0323 (8)0.0335 (7)0.0012 (6)0.0043 (6)0.0010 (6)
N40.0338 (8)0.0320 (8)0.0507 (9)0.0033 (6)0.0057 (7)0.0006 (7)
O10.0345 (7)0.0504 (9)0.0675 (9)0.0043 (6)0.0002 (6)0.0017 (7)
O20.0522 (9)0.0447 (9)0.0673 (9)0.0126 (7)0.0016 (7)0.0034 (7)
Geometric parameters (Å, º) top
C1—C21.384 (2)C11—H11A0.9600
C1—C61.399 (3)C11—H11B0.9600
C1—C81.516 (2)C11—H11C0.9600
C2—C31.389 (3)C12—N41.356 (2)
C2—H20.9300C12—N31.362 (2)
C3—C41.380 (3)C12—S11.6625 (18)
C3—H30.9300C13—C141.342 (2)
C4—C51.381 (3)C13—N41.394 (2)
C4—H40.9300C13—C151.501 (2)
C5—C61.390 (3)C14—C161.478 (2)
C5—H50.9300C15—H15A0.9600
C6—N11.412 (2)C15—H15B0.9600
C7—N11.282 (2)C15—H15C0.9600
C7—N21.335 (2)C16—O21.205 (2)
C7—N31.446 (2)C16—O11.338 (2)
C8—N31.485 (2)C17—O11.454 (2)
C8—C141.507 (2)C17—C181.479 (3)
C8—H80.9800C17—H17A0.9700
C9—N21.463 (2)C17—H17B0.9700
C9—C101.507 (3)C18—H18A0.9600
C9—C111.507 (3)C18—H18B0.9600
C9—H90.9800C18—H18C0.9600
C10—H10A0.9600N2—H2A0.861 (9)
C10—H10B0.9600N4—H4A0.870 (9)
C10—H10C0.9600
C2—C1—C6120.35 (16)H11A—C11—H11C109.5
C2—C1—C8125.15 (16)H11B—C11—H11C109.5
C6—C1—C8114.50 (15)N4—C12—N3114.64 (15)
C1—C2—C3120.16 (19)N4—C12—S1122.31 (13)
C1—C2—H2119.9N3—C12—S1123.04 (13)
C3—C2—H2119.9C14—C13—N4118.16 (16)
C4—C3—C2119.69 (19)C14—C13—C15128.17 (17)
C4—C3—H3120.2N4—C13—C15113.67 (16)
C2—C3—H3120.2C13—C14—C16122.63 (17)
C3—C4—C5120.42 (19)C13—C14—C8118.46 (16)
C3—C4—H4119.8C16—C14—C8118.91 (15)
C5—C4—H4119.8C13—C15—H15A109.5
C4—C5—C6120.66 (19)C13—C15—H15B109.5
C4—C5—H5119.7H15A—C15—H15B109.5
C6—C5—H5119.7C13—C15—H15C109.5
C5—C6—C1118.72 (17)H15A—C15—H15C109.5
C5—C6—N1119.32 (17)H15B—C15—H15C109.5
C1—C6—N1121.92 (15)O2—C16—O1122.99 (17)
N1—C7—N2125.29 (16)O2—C16—C14126.50 (18)
N1—C7—N3120.91 (15)O1—C16—C14110.52 (16)
N2—C7—N3113.72 (15)O1—C17—C18107.19 (18)
N3—C8—C14109.22 (13)O1—C17—H17A110.3
N3—C8—C1105.62 (13)C18—C17—H17A110.3
C14—C8—C1117.33 (14)O1—C17—H17B110.3
N3—C8—H8108.1C18—C17—H17B110.3
C14—C8—H8108.1H17A—C17—H17B108.5
C1—C8—H8108.1C17—C18—H18A109.5
N2—C9—C10107.66 (17)C17—C18—H18B109.5
N2—C9—C11111.32 (17)H18A—C18—H18B109.5
C10—C9—C11112.96 (19)C17—C18—H18C109.5
N2—C9—H9108.3H18A—C18—H18C109.5
C10—C9—H9108.3H18B—C18—H18C109.5
C11—C9—H9108.3C7—N1—C6116.54 (15)
C9—C10—H10A109.5C7—N2—C9123.11 (15)
C9—C10—H10B109.5C7—N2—H2A117.5 (13)
H10A—C10—H10B109.5C9—N2—H2A118.4 (13)
C9—C10—H10C109.5C12—N3—C7118.27 (14)
H10A—C10—H10C109.5C12—N3—C8118.45 (14)
H10B—C10—H10C109.5C7—N3—C8110.19 (13)
C9—C11—H11A109.5C12—N4—C13125.35 (15)
C9—C11—H11B109.5C12—N4—H4A114.4 (14)
H11A—C11—H11B109.5C13—N4—H4A120.2 (14)
C9—C11—H11C109.5C16—O1—C17116.80 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.86 (1)2.26 (1)3.102 (2)165 (2)
N4—H4A···S1ii0.87 (1)2.42 (1)3.2804 (15)172 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H22N4O2S
Mr358.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.4128 (3), 10.5636 (5), 19.2052 (6)
β (°) 102.347 (1)
V3)1865.46 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
12093, 3857, 3014
Rint0.076
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.139, 1.03
No. of reflections3857
No. of parameters236
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.861 (9)2.263 (11)3.102 (2)164.6 (18)
N4—H4A···S1ii0.870 (9)2.417 (10)3.2804 (15)172.1 (18)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by the Foundation of Naval University of Engineering (grant No. HGDQNJJ11007) and Hubei University of Medicine (grant Nos. 2010QDJ02 and 2011XS13).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHuang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, W. J., Liu, S., He, P. & Ding, M. W. (2010). Tetrahedron, 66, 8151–8159.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H. X., Sun, Y. & Ding, M. W. (2008). Synth. Commun. 38, 4328–4336.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H. X., Xie, C., Ding, M. W., Liu, Z. M. & Yang, G. F. (2007). Synlett, pp. 2280–2282.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, X. H., Liu, M., Ding, M. W. & He, H. W. (2010). Synth. Commun. 40, 1453–1460.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds