metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m759-m760

A new dabco-templated metal sulfate: 1,4-diazo­niabi­cyclo­[2.2.2]octane hexa­aqua­cadmium bis­­(sulfate)

aSchool of Chemical and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China, and bSchool of Science, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
*Correspondence e-mail: haibiao_yan@163.com

(Received 27 March 2012; accepted 4 May 2012; online 12 May 2012)

The title double mol­ecular salt, (C6H14N2)[Cd(H2O)6](SO4)2, is an isostructure of its Mn and Co analogues. The CdII atom adopts a near-regular CdO6 octa­hedral coordination geometry. The crystal structure can be described as an alternation of cationic and anionic layers along [010], and numerous O—H⋯O and N—H⋯O hydrogen bonds are observed. No thermal anomalies corresponding to possible phase transitions were observed in DSC (differential scanning calorimetry) measurements and the 93 K structure is almost the same as the room-temperature structure.

Related literature

For structural phase transitions of 1,4-diazoniabicyclo[2.2.2]octane-templated metal sulfates, see: Yahyaoui et al. (2007[Yahyaoui, S., Rekik, W., Naili, H., Mhiri, T. & Bataill, T. (2007). J. Solid State Chem. 180, 3560-3570.]); Naili et al. (2006[Naili, H., Rekik, W., Bataille, T. & Mhiri, T. (2006). Polyhedron, 25, 3543-3554.]); Rekik et al. (2006[Rekik, W., Naili, H., Bataille, T. & Mhiri, T. (2006). J. Organomet. Chem. 691, 4725-4732.]); Zhang et al. (2009[Zhang, W., Chen, L.-Zh., Xiong, R.-G., Nakamura, T., Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For other related structures, see: Zhao et al. (2005[Zhao, Y.-J., Li, X.-H. & Wang, S. (2005). Acta Cryst. E61, m671-m672.]); Rekik et al. (2007[Rekik, W., Naili, H., Mhiri, T. & Bataille, T. (2007). J. Chem. Crystallogr. 37, 147-155.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N2)[Cd(H2O)6](SO4)2

  • Mr = 526.81

  • Monoclinic, P 21 /c

  • a = 12.201 (2) Å

  • b = 12.461 (3) Å

  • c = 12.377 (3) Å

  • β = 105.10 (3)°

  • V = 1816.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 298 K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.621, Tmax = 0.818

  • 17238 measured reflections

  • 4123 independent reflections

  • 3872 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.11

  • 4123 reflections

  • 275 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O4 2.2437 (16)
Cd1—O5 2.2514 (17)
Cd1—O2 2.2589 (17)
Cd1—O1 2.2629 (17)
Cd1—O3 2.3189 (18)
Cd1—O6 2.3534 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O9i 0.84 (2) 1.85 (2) 2.691 (2) 176 (3)
O1—H1B⋯O12 0.85 (2) 1.90 (2) 2.721 (2) 165 (3)
O2—H2A⋯O8 0.85 (2) 1.89 (2) 2.725 (2) 169 (3)
O2—H2B⋯O14ii 0.83 (2) 1.92 (2) 2.720 (3) 164 (3)
O3—H3A⋯O8iii 0.84 (2) 1.93 (2) 2.775 (3) 174 (3)
O3—H3B⋯O11iv 0.83 (2) 2.01 (2) 2.802 (3) 159 (3)
O4—H4A⋯O14v 0.85 (2) 1.82 (2) 2.666 (2) 176 (3)
O4—H4B⋯O13 0.84 (2) 1.85 (2) 2.680 (2) 171 (3)
O5—H5A⋯O10 0.83 (2) 1.92 (2) 2.741 (2) 171 (3)
O5—H5B⋯O9iii 0.82 (2) 1.87 (2) 2.686 (2) 172 (4)
O6—H6A⋯O12v 0.83 (2) 1.94 (2) 2.767 (2) 175 (3)
O6—H6B⋯O10i 0.84 (2) 2.07 (2) 2.902 (2) 175 (3)
N1—H1E⋯O11vi 0.91 1.94 2.749 (3) 147
N1—H1E⋯O12vi 0.91 2.36 3.140 (3) 144
N2—H2E⋯O7iii 0.91 1.78 2.671 (3) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-diazoniabicyclo(2,2,2)octane (dabcodiium)-templated metal sulfates with general formula (C6H14N2)[M(H2O)6](SO4)2 (M = Mn, Ni, Fe, Co, Cu) are structurally interesting. These structures involve rich hydrogen bonding modes and thus several packing modes form among them (Yahyaoui et al., 2007; Rekik et al., 2006, 2007; Naili et al., 2006; Zhao et al., 2005). The related Fe, Ni, Cu compounds were found to undergo reversible phase transitions resulting from the ordering of the dabcodiium cations (Yahyaoui et al., 2007; Naili et al., 2006; Rekik et al., 2006). Similarly, Dabcodiium hexaaquacopper(II) bis(selenate), (H2dabco)Cu(H2O)6(SeO4)2, as a new member of this series, was recently found to undergo a paraelectric-to-ferroelctric phase transition with striking dielectric response (Zhang et al., 2009). It seems the structures and related structural phase transitions are sensitive to both the metal ions and the counterpart anions. So far, the metal ions in this series of compounds are limited to the first row transition metal. We herein report the structure of a new member of this series with the second transition metal ion, Dabcodiium hexaaquacadmium(II) bis(sulfate), (C6H14N2)[Cd(H2O)6](SO4)2 (I).

The crystal of I is monoclinic, spacegroup P21/c, a = 12.201, b = 12.461, c = 12.377 Å, and β= 105.1°. Therefore, I was isostructural to the corresponding Mn or Co analogues (Rekik et al., 2007; Zhao et al., 2005). The structure consists of discrete [Cd(H2O)6]2+ octahedra, sulfate tetrahedra and dabcodiium cations linked together by a hydrogen bond network (Fig. 1 and 2, Table 1).

The [Cd(H2O)6]2+ octahedron is slightly irregular according to the Cd–OW distances and the OW–Cd–OW angles (Table 1). Each [Cd(H2O)6]2+ octahedron is surrounded by five sulfate groups H-bonded in a bidentate manner and two sulfate groups in a monodentate mode to the octahedron (Fig. 3).

The dabconium moieties can be viewed as template, and are stabilized in the hydrogen bonding network through N—H···O bonds (Fig. 2, Table 2).They occupy general positions and are fully ordered. The C–C and N–C distances range from 1.507 (3) to 1.512 (4) Å, from 1.481 (3) to 1.496 (3) Å respectively. As is the case in the Mn or Co isostructure. In the dabconium templated sulfates, phase transition was observed only for those with disordered dabcodiium cations. To confirm whether there is a phase transition, we performed DSC measurement. No thermal anomaly was observed in the temperature from 148 to below 373 K. Near 373 K the heat flow increases rapidly, indicating there is not a higher-temperature phase transition but decomposition. The structure determined at 93 K is shown to have the same structure at room temperature. The negative results prove the disordered dabcodiium play the key role in the phase transtions as well as packing modes of the structures.

Fig. 4 illustrates a cationic layer in the (ac) plane. Organic and inorganic cations alternate along the three crystallographic axes, so that each organic cation is surrounded by six inorganic cations in the structure, and vice versa. The organic moieties are stacked along [101] and [101] directions in the (ac) plane, so the inorganic cations are. The two independent sulfate anions have normal geometry, as seen in other dabcodiium-templated sulfates (Yahyaoui et al., 2007; Rekik et al., 2006, 2007; Naili et al., 2006; Zhao et al., 2005). As can be seen in Fig. 2 and 5, the sulfate anions play an important role in the structure connectivity. They are stacked in a manner that they form anionic layers parallel to the cationic ones parallel to the (ac) plane. Then cationic and anionic layers alternate along the b axis in a ABAB fashion and linked by N—H···O and OW—H···O. (Fig. 5). The crystal structure is then described as an alternation of cationic and anionic layers along [010].

Related literature top

For structural phase transitions of dabcodiium-templated metal sulfates, see: Yahyaoui et al. (2007); Naili et al. (2006); Rekik et al. (2006); Zhang et al. (2009). For other related structures, see: Zhao et al. (2005); Rekik et al. (2007).

Experimental top

An aqueous solution of dabcodiium sulfate was prepared by neutralization of dabco with equimolar amount of sulfuric acid in water. To this solution, an aqueous solution containing equimolar amount of CdSO4 was added. The resulting solution was allowed to evaporate at room temperature and colourless blocks of (I) were obtained after two weeks, Yield: 70%.

Refinement top

All H atoms were found in the difference maps. Those from coordinated water molecules was refined isotropically. The bond distances of O—H and distance between two H atoms from each water molecules was restrained to be 0.85 and 1.37 Å with the default deviation respectively. However, those bonded to C and N atoms were placed at ideal positions and refined using a 'riding' model with Uiso = 1.2 Ueq (C or N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: RAPID-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of I with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Dabcodiium templated three dimensional hydgrogen bonding network of I viewed down the [101] direction.
[Figure 3] Fig. 3. Neighboring sulfates in the environment of [Cd(H2O)6]2+ in I.
[Figure 4] Fig. 4. A cationic layer in the (ac) plane, showing the alteration of organic and inorganic cations.
[Figure 5] Fig. 5. Projection of the crystal structure of I along the c axis, showing the alternation of the anionic and cationic layers along the b axis.
1,4-diazoniabicyclo[2.2.2]octane hexaaquacadmium bis(sulfate) top
Crystal data top
(C6H14N2)[Cd(H2O)6](SO4)2F(000) = 1072
Mr = 526.81Dx = 1.926 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.201 (2) ÅCell parameters from 14955 reflections
b = 12.461 (3) Åθ = 3.2–27.4°
c = 12.377 (3) ŵ = 1.50 mm1
β = 105.10 (3)°T = 298 K
V = 1816.8 (6) Å3Block, colourless
Z = 40.45 × 0.40 × 0.35 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
4123 independent reflections
Radiation source: Rotating anode target3872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2000)
h = 1515
Tmin = 0.621, Tmax = 0.818k = 1616
17238 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0296P)2 + 1.2094P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
4123 reflectionsΔρmax = 0.60 e Å3
275 parametersΔρmin = 0.56 e Å3
18 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (4)
Crystal data top
(C6H14N2)[Cd(H2O)6](SO4)2V = 1816.8 (6) Å3
Mr = 526.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.201 (2) ŵ = 1.50 mm1
b = 12.461 (3) ÅT = 298 K
c = 12.377 (3) Å0.45 × 0.40 × 0.35 mm
β = 105.10 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
4123 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2000)
3872 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.818Rint = 0.034
17238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02618 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.60 e Å3
4123 reflectionsΔρmin = 0.56 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.762711 (12)0.506501 (11)0.729425 (12)0.02484 (7)
O10.69454 (15)0.40460 (16)0.57520 (15)0.0434 (4)
H1A0.6259 (15)0.386 (2)0.564 (3)0.058 (10)*
H1B0.729 (2)0.3523 (19)0.556 (2)0.045 (8)*
O20.81582 (14)0.59718 (14)0.89279 (15)0.0373 (4)
H2A0.775 (2)0.651 (2)0.899 (3)0.057 (10)*
H2B0.8838 (14)0.613 (2)0.917 (2)0.044 (8)*
O30.83071 (16)0.62381 (18)0.61663 (18)0.0520 (5)
H3A0.786 (2)0.654 (3)0.561 (2)0.059 (10)*
H3B0.8981 (15)0.630 (3)0.616 (3)0.065 (10)*
O40.93016 (14)0.42094 (14)0.77884 (13)0.0335 (3)
H4A0.943 (3)0.394 (2)0.8444 (15)0.054 (9)*
H4B0.937 (3)0.373 (2)0.734 (2)0.066 (11)*
O50.59756 (15)0.59730 (15)0.68221 (14)0.0400 (4)
H5A0.579 (3)0.646 (2)0.719 (2)0.061 (10)*
H5B0.583 (3)0.610 (3)0.6150 (15)0.076 (12)*
O60.67448 (15)0.38020 (13)0.82049 (14)0.0367 (4)
H6A0.717 (2)0.341 (2)0.868 (2)0.048 (8)*
H6B0.6206 (18)0.344 (2)0.782 (2)0.042 (8)*
S10.56662 (4)0.75687 (4)0.92161 (4)0.02197 (11)
O70.53791 (18)0.66368 (15)0.98053 (16)0.0516 (5)
O80.69086 (14)0.76330 (15)0.94054 (16)0.0453 (4)
O90.52740 (14)0.85701 (13)0.96289 (13)0.0371 (4)
O100.51233 (14)0.74705 (12)0.80082 (12)0.0339 (3)
S20.93025 (4)0.25840 (4)0.51135 (4)0.02264 (11)
O110.96652 (16)0.34160 (17)0.44445 (17)0.0538 (5)
O120.80398 (13)0.25778 (14)0.47823 (15)0.0391 (4)
O130.97215 (15)0.28065 (14)0.63040 (13)0.0377 (4)
O140.97126 (16)0.15212 (15)0.48799 (14)0.0434 (4)
N10.78520 (16)1.05733 (14)0.80199 (15)0.0288 (4)
H1E0.82281.09840.86080.035*
N20.68305 (16)0.94584 (14)0.64165 (15)0.0305 (4)
H2E0.64530.90470.58300.037*
C10.7918 (3)1.1099 (3)0.6964 (2)0.0670 (10)
H1C0.87061.11730.69510.080*
H1D0.75861.18110.69180.080*
C20.8375 (2)0.9493 (2)0.8128 (2)0.0515 (7)
H2C0.83100.91570.88160.062*
H2D0.91740.95520.81550.062*
C30.6649 (2)1.0471 (2)0.8051 (2)0.0445 (6)
H3C0.63041.11760.80090.053*
H3D0.66081.01380.87480.053*
C40.7286 (2)1.0432 (2)0.59765 (19)0.0405 (5)
H4C0.66691.08460.55090.049*
H4D0.77951.02220.55280.049*
C50.7775 (2)0.8816 (2)0.7136 (2)0.0449 (6)
H5C0.83050.86060.67100.054*
H5D0.74760.81700.73910.054*
C60.60209 (19)0.97960 (19)0.7075 (2)0.0336 (5)
H6C0.57030.91680.73440.040*
H6D0.54031.02070.66040.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02507 (10)0.02523 (10)0.02356 (10)0.00126 (5)0.00517 (6)0.00051 (5)
O10.0283 (9)0.0601 (12)0.0413 (9)0.0027 (8)0.0081 (7)0.0239 (9)
O20.0262 (8)0.0391 (9)0.0420 (9)0.0011 (7)0.0004 (7)0.0159 (7)
O30.0330 (10)0.0659 (13)0.0580 (12)0.0044 (9)0.0138 (9)0.0350 (10)
O40.0336 (8)0.0401 (9)0.0272 (8)0.0088 (7)0.0087 (7)0.0033 (7)
O50.0422 (9)0.0534 (11)0.0230 (8)0.0214 (8)0.0057 (7)0.0019 (7)
O60.0336 (9)0.0359 (9)0.0349 (9)0.0072 (7)0.0011 (7)0.0104 (7)
S10.0208 (2)0.0220 (2)0.0202 (2)0.00136 (17)0.00037 (17)0.00003 (16)
O70.0549 (11)0.0445 (10)0.0450 (10)0.0107 (9)0.0054 (9)0.0236 (8)
O80.0232 (8)0.0536 (11)0.0573 (11)0.0003 (7)0.0072 (7)0.0234 (9)
O90.0352 (8)0.0403 (9)0.0318 (8)0.0115 (7)0.0016 (7)0.0109 (7)
O100.0420 (9)0.0338 (8)0.0209 (7)0.0046 (7)0.0008 (6)0.0040 (6)
S20.0215 (2)0.0245 (2)0.0205 (2)0.00259 (17)0.00292 (17)0.00059 (17)
O110.0407 (10)0.0647 (13)0.0575 (12)0.0032 (9)0.0158 (9)0.0362 (10)
O120.0220 (7)0.0454 (9)0.0463 (9)0.0003 (7)0.0025 (7)0.0153 (8)
O130.0416 (9)0.0423 (9)0.0256 (8)0.0029 (7)0.0024 (7)0.0100 (7)
O140.0445 (9)0.0406 (10)0.0348 (9)0.0198 (8)0.0079 (7)0.0123 (7)
N10.0310 (9)0.0284 (9)0.0242 (8)0.0067 (7)0.0023 (7)0.0048 (7)
N20.0358 (10)0.0271 (9)0.0247 (8)0.0043 (7)0.0006 (7)0.0075 (7)
C10.102 (3)0.0605 (19)0.0367 (14)0.0519 (19)0.0150 (16)0.0042 (13)
C20.0420 (14)0.0556 (17)0.0457 (15)0.0237 (13)0.0085 (12)0.0069 (13)
C30.0315 (12)0.0614 (17)0.0408 (13)0.0087 (11)0.0100 (10)0.0180 (12)
C40.0510 (15)0.0476 (14)0.0257 (11)0.0074 (12)0.0149 (10)0.0040 (10)
C50.0470 (14)0.0302 (12)0.0533 (15)0.0119 (10)0.0055 (12)0.0065 (11)
C60.0239 (10)0.0381 (11)0.0365 (12)0.0055 (9)0.0037 (9)0.0018 (9)
Geometric parameters (Å, º) top
Cd1—O42.2437 (16)S2—O121.4875 (16)
Cd1—O52.2514 (17)N1—C21.481 (3)
Cd1—O22.2589 (17)N1—C11.483 (3)
Cd1—O12.2629 (17)N1—C31.484 (3)
Cd1—O32.3189 (18)N1—H1E0.9100
Cd1—O62.3534 (17)N2—C51.493 (3)
O1—H1A0.844 (17)N2—C41.496 (3)
O1—H1B0.847 (16)N2—C61.496 (3)
O2—H2A0.848 (17)N2—H2E0.9100
O2—H2B0.827 (17)C1—C41.512 (4)
O3—H3A0.844 (17)C1—H1C0.9700
O3—H3B0.829 (17)C1—H1D0.9700
O4—H4A0.851 (17)C2—C51.512 (4)
O4—H4B0.838 (17)C2—H2C0.9700
O5—H5A0.825 (17)C2—H2D0.9700
O5—H5B0.820 (17)C3—C61.507 (3)
O6—H6A0.833 (17)C3—H3C0.9700
O6—H6B0.839 (16)C3—H3D0.9700
S1—O71.4615 (18)C4—H4C0.9700
S1—O101.4740 (16)C4—H4D0.9700
S1—O81.4746 (17)C5—H5C0.9700
S1—O91.4747 (16)C5—H5D0.9700
S2—O131.4550 (16)C6—H6C0.9700
S2—O111.4654 (18)C6—H6D0.9700
S2—O141.4707 (17)
O4—Cd1—O5178.14 (7)C1—N1—C3110.0 (2)
O4—Cd1—O288.00 (7)C2—N1—H1E108.9
O5—Cd1—O290.55 (7)C1—N1—H1E108.9
O4—Cd1—O194.12 (7)C3—N1—H1E108.9
O5—Cd1—O187.45 (7)C5—N2—C4110.5 (2)
O2—Cd1—O1172.97 (7)C5—N2—C6110.05 (19)
O4—Cd1—O391.17 (7)C4—N2—C6109.35 (18)
O5—Cd1—O387.90 (7)C5—N2—H2E109.0
O2—Cd1—O399.17 (8)C4—N2—H2E109.0
O1—Cd1—O387.50 (8)C6—N2—H2E109.0
O4—Cd1—O692.83 (6)N1—C1—C4109.6 (2)
O5—Cd1—O688.30 (7)N1—C1—H1C109.7
O2—Cd1—O688.06 (7)C4—C1—H1C109.7
O1—Cd1—O685.14 (7)N1—C1—H1D109.7
O3—Cd1—O6171.86 (7)C4—C1—H1D109.7
Cd1—O1—H1A115 (2)H1C—C1—H1D108.2
Cd1—O1—H1B125 (2)N1—C2—C5109.16 (19)
H1A—O1—H1B107 (2)N1—C2—H2C109.8
Cd1—O2—H2A116 (2)C5—C2—H2C109.8
Cd1—O2—H2B118 (2)N1—C2—H2D109.8
H2A—O2—H2B110 (2)C5—C2—H2D109.8
Cd1—O3—H3A121 (2)H2C—C2—H2D108.3
Cd1—O3—H3B125 (2)N1—C3—C6109.07 (18)
H3A—O3—H3B112 (2)N1—C3—H3C109.9
Cd1—O4—H4A112 (2)C6—C3—H3C109.9
Cd1—O4—H4B114 (2)N1—C3—H3D109.9
H4A—O4—H4B109 (2)C6—C3—H3D109.9
Cd1—O5—H5A126 (2)H3C—C3—H3D108.3
Cd1—O5—H5B108 (3)N2—C4—C1108.13 (18)
H5A—O5—H5B114 (3)N2—C4—H4C110.1
Cd1—O6—H6A117 (2)C1—C4—H4C110.1
Cd1—O6—H6B118.2 (19)N2—C4—H4D110.1
H6A—O6—H6B110 (2)C1—C4—H4D110.1
O7—S1—O10109.72 (11)H4C—C4—H4D108.4
O7—S1—O8109.51 (12)N2—C5—C2108.66 (19)
O10—S1—O8109.72 (11)N2—C5—H5C110.0
O7—S1—O9110.97 (12)C2—C5—H5C110.0
O10—S1—O9108.73 (9)N2—C5—H5D110.0
O8—S1—O9108.17 (10)C2—C5—H5D110.0
O13—S2—O11111.06 (12)H5C—C5—H5D108.3
O13—S2—O14108.84 (10)N2—C6—C3108.90 (18)
O11—S2—O14110.96 (12)N2—C6—H6C109.9
O13—S2—O12110.22 (10)C3—C6—H6C109.9
O11—S2—O12106.95 (11)N2—C6—H6D109.9
O14—S2—O12108.79 (10)C3—C6—H6D109.9
C2—N1—C1111.1 (2)H6C—C6—H6D108.3
C2—N1—C3109.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9i0.84 (2)1.85 (2)2.691 (2)176 (3)
O1—H1B···O120.85 (2)1.90 (2)2.721 (2)165 (3)
O2—H2A···O80.85 (2)1.89 (2)2.725 (2)169 (3)
O2—H2B···O14ii0.83 (2)1.92 (2)2.720 (3)164 (3)
O3—H3A···O8iii0.84 (2)1.93 (2)2.775 (3)174 (3)
O3—H3B···O11iv0.83 (2)2.01 (2)2.802 (3)159 (3)
O4—H4A···O14v0.85 (2)1.82 (2)2.666 (2)176 (3)
O4—H4B···O130.84 (2)1.85 (2)2.680 (2)171 (3)
O5—H5A···O100.83 (2)1.92 (2)2.741 (2)171 (3)
O5—H5B···O9iii0.82 (2)1.87 (2)2.686 (2)172 (4)
O6—H6A···O12v0.83 (2)1.94 (2)2.767 (2)175 (3)
O6—H6B···O10i0.84 (2)2.07 (2)2.902 (2)175 (3)
N1—H1E···O11vi0.911.942.749 (3)147
N1—H1E···O12vi0.912.363.140 (3)144
N2—H2E···O7iii0.911.782.671 (3)164
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H14N2)[Cd(H2O)6](SO4)2
Mr526.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.201 (2), 12.461 (3), 12.377 (3)
β (°) 105.10 (3)
V3)1816.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2000)
Tmin, Tmax0.621, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
17238, 4123, 3872
Rint0.034
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.11
No. of reflections4123
No. of parameters275
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.56

Computer programs: RAPID-AUTO (Rigaku, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Cd1—O42.2437 (16)Cd1—O12.2629 (17)
Cd1—O52.2514 (17)Cd1—O32.3189 (18)
Cd1—O22.2589 (17)Cd1—O62.3534 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O9i0.844 (17)1.849 (17)2.691 (2)176 (3)
O1—H1B···O120.847 (16)1.895 (18)2.721 (2)165 (3)
O2—H2A···O80.848 (17)1.888 (18)2.725 (2)169 (3)
O2—H2B···O14ii0.827 (17)1.916 (19)2.720 (3)164 (3)
O3—H3A···O8iii0.844 (17)1.934 (18)2.775 (3)174 (3)
O3—H3B···O11iv0.829 (17)2.01 (2)2.802 (3)159 (3)
O4—H4A···O14v0.851 (17)1.816 (17)2.666 (2)176 (3)
O4—H4B···O130.838 (17)1.850 (18)2.680 (2)171 (3)
O5—H5A···O100.825 (17)1.923 (18)2.741 (2)171 (3)
O5—H5B···O9iii0.820 (17)1.872 (19)2.686 (2)172 (4)
O6—H6A···O12v0.833 (17)1.937 (17)2.767 (2)175 (3)
O6—H6B···O10i0.839 (16)2.065 (17)2.902 (2)175 (3)
N1—H1E···O11vi0.911.942.749 (3)147
N1—H1E···O12vi0.912.363.140 (3)144
N2—H2E···O7iii0.911.782.671 (3)164
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a Start-up Grant from Hubei University of Technology to BQW.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNaili, H., Rekik, W., Bataille, T. & Mhiri, T. (2006). Polyhedron, 25, 3543–3554.  CAS Google Scholar
First citationRekik, W., Naili, H., Bataille, T. & Mhiri, T. (2006). J. Organomet. Chem. 691, 4725–4732.  Web of Science CrossRef CAS Google Scholar
First citationRekik, W., Naili, H., Mhiri, T. & Bataille, T. (2007). J. Chem. Crystallogr. 37, 147–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYahyaoui, S., Rekik, W., Naili, H., Mhiri, T. & Bataill, T. (2007). J. Solid State Chem. 180, 3560–3570.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, W., Chen, L.-Zh., Xiong, R.-G., Nakamura, T., Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, Y.-J., Li, X.-H. & Wang, S. (2005). Acta Cryst. E61, m671–m672.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m759-m760
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds