organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermined structure of oxaline: absolute configuration using Cu Kα radiation

aKey Laboratory of Marine Drugs of the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China
*Correspondence e-mail: weimingzhu@ouc.edu.cn

(Received 11 April 2012; accepted 30 April 2012; online 5 May 2012)

In the title compound, C24H25N5O4, the stereogenic C atom bonded to three N atoms and one C atom has an S configuration and its directly bonded neighbour has an R configuration. An intra­molecular N—H⋯O hydrogen bond supports the near coplanarity of the two C3N2-five-membered rings [dihedral angle = 5.64 (10)°]. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming a C(8) chain propagating in [001]. The chains are connected by C—H⋯O inter­actions, generating a three-dimensional network. The previous study [Nagel et al. (1974[Nagel, D. W., Pachler, K. G. R., Steyn, P. S., Wessels, P. L., Gafner, G. & Kruger, G. J. (1974). Chem. Commun. pp. 1021-1022.]). Chem. Commun. pp. 1021–1022] did not establish the absolute structure and no atomic coordinates were published or deposited.

Related literature

For the previous structure, see: Nagel et al. (1974[Nagel, D. W., Pachler, K. G. R., Steyn, P. S., Wessels, P. L., Gafner, G. & Kruger, G. J. (1974). Chem. Commun. pp. 1021-1022.]). For background to oxaline and its properties, see: Steyn (1970[Steyn, P. S. (1970). Tetrahedron, 26, 51-57.]); Koizumi et al. (2004[Koizumi, Y., Arai, M., Tomoda, H. & Omura, S. (2004). Biochim. Biophys. Acta, 1693, 47-55.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25N5O4

  • Mr = 447.49

  • Orthorhombic, P 21 21 21

  • a = 10.7897 (2) Å

  • b = 13.2457 (3) Å

  • c = 15.6436 (4) Å

  • V = 2235.74 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.60 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.658, Tmax = 0.914

  • 11202 measured reflections

  • 3786 independent reflections

  • 3766 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.08

  • 3786 reflections

  • 379 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1403 Friedel pairs

  • Flack parameter: −0.05 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯O13 0.89 (2) 1.85 (2) 2.6562 (19) 151 (2)
N14—H14⋯N19i 0.83 (2) 1.97 (2) 2.798 (2) 175 (2)
C4—H4⋯O9ii 0.97 (2) 2.54 (2) 3.154 (2) 121.5 (16)
C20—H20⋯O13iii 1.00 (2) 2.54 (2) 3.353 (2) 137.9 (16)
C24—H24C⋯O13iv 0.98 (3) 2.47 (3) 3.382 (2) 154 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Oxaline is a member of a class of biologically active indole alkaloids, characterized by a unique indoline spiroaminal framework and substitution of a 1,1-dimethylallyl ("reverse-prenyl") group at the benzylic ring junction. Oxaline was originally isolated from the culture broth of Penicillium oxalicum HK14–01 containing several unique structural features, including the N-OMe group, the unusual coupling of tryptophan and histidine, a single carbon atom bearing three nitrogen functionalities and a reversed prenyl group (Steyn, 1970). Besides, oxaline was found to inhibit tubulin polymerization in Jarkat cells, resulting in cell cycle arrest at the M phase (Koizumi et al., 2004). The X-ray structure of oxaline on Mo—Kα data was determined without definite absolute configuration (Nagel, et al., 1974). We isolated oxaline as part of our ongoing studies on characterizing bioactive metabolites from marine-derived halotolerant fungi. And the crystal structure on Cu—Kα and the absolute configuration are reported here.

The title compound I contains a four fused rings structure as illustrated in Fig. 1. Two chiral atoms of C2 and C3 have the absolute configurations of S and R, respectively. Atom of N1 is S but it can invert in solution. Atom O1 in I (S-) has a short intra-contact of O1···N14 [2.7018 (19) Å]. While in R- one, the short contact are 2.882(C3), 2.581(C8), 2.390(C9), 2.662(C10) and 2.675 Å(N11), which indicates a unfavorable configuration. Both bonds of C8C9 and C12C15 are E but cis conformation. The five-membered ring of N1—C2—C3—C3A—C7A adopts envelope conformation with the puckering parameters (Cremer and Pople, 1975) of Q[0.3968 (17) Å] and ϕ[34.8 (2)°]. The six-membered ring of C2—C3—C8—C9—C10—N11 has the puckering parameters of Q = 0.4342 (17) Å, θ = 69.0 (2)° and ϕ = 76.8 (2)°, which implies a conformation among boat, twist-boat and half-chair.

In the crystal, there are a one-dimensional classical hydrogen bonding chain parallel to the c axis (Fig. 2, Table 2) and a non-classical one along the b axis. These two kinds of chains together weave a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For the previous structure, see: Nagel et al. (1974). For background to oxaline and its properties, see: Steyn (1970); Koizumi et al. (2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The halotolerant fugal strain Penicillium chrysogenum HK14–01, was isolated from the sediments collected in the Yellow River Delta, Dongying, Shandong, China. The working strain was cultured under static conditions at 298 K for 35 days in two hundred 1L conical flasks containing the liquid medium (300 ml/flask) composed of glucose (10 g/L), peptone (5 g/L), yeast extract (3 g/L), malt extract (1.5 g/L), marinum salt (100 g/L). The fermented whole broth (60 L) was filtered through cheese cloth to separate into supernatant and mycelia. The mycelia was extracted three times with acetone. The acetone solution was concentrated under reduced pressure to afford an aqueous solution. The acetone solution was extracted three times with ethyl acetate to give an ethyl acetate solution which was concentrated under reduced pressure to give a crude extract (39 g). The crude extract, which was subjected to chromatography over silica gel column using a stepwise gradient elution of CH2Cl2/petroleum ether(50–100%,V/V) and CH2Cl2/MeOH (0–100%,V/V),to yield twelve fractions (Fr.1-Fr.12). Fr.9, was fractionated on a C-18 ODS column using a step gradient elution of MeOH/H2O (60–100%,V/V) and was separated into 6 subfractions (Fr.9.1-Fr.9.6). Fr.9.3 was applied on Sephadex LH-20 using CH2Cl2/MeOH (1:1) to yield the title compound (145.0 mg). Colourless blocks were obtained by slow evaporation of petroleum ether/acetone (1:1) solution at 298 K.

Refinement top

H atoms on C23 and C25 were placed in calculated positions, with C—H distances of 0.95 (C23) and 0.98 Å (C25), and were included in the final cycles of refinement in a riding model, with Uiso(H) values equal to 1.2Ueq(C23) or 1.5Ueq(C25). All other H atoms were located in a difference Fourier map and included in structure-factor calculations with free refinement. The highest difference peak is 0.83Å from atom H25C.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids shown at the 50% probability level. Dashed lines indicates a intramolecular hydrogen bond.
[Figure 2] Fig. 2. A one-dimensional classical hydrogen-bonding chain along the c axis. [Symmetry code: (i) 1/2 - x, -y, z - 1/2; (ii) 1/2 - x, -y, z + 1/2]
[Figure 3] Fig. 3. A view of a three-dimensional hydrogen-bonding networks assembled by the classical chains above and the nonclassical ones parallel to the b axis. [Symmetry code: (ii) 1/2 - x, -y, z + 1/2; (iii) -x, y + 1/2, 3/2 - z; (iv) -x, y - 1/2, 3/2 - z]
oxaline top
Crystal data top
C24H25N5O4F(000) = 944
Mr = 447.49Dx = 1.329 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9936 reflections
a = 10.7897 (2) Åθ = 2.8–69.0°
b = 13.2457 (3) ŵ = 0.76 mm1
c = 15.6436 (4) ÅT = 100 K
V = 2235.74 (9) Å3Block, colourless
Z = 40.60 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3786 independent reflections
Radiation source: fine-focus sealed tube3766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 69.4°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1312
Tmin = 0.658, Tmax = 0.914k = 1515
11202 measured reflectionsl = 1618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.608P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3786 reflectionsΔρmax = 0.64 e Å3
379 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 1403 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (18)
Crystal data top
C24H25N5O4V = 2235.74 (9) Å3
Mr = 447.49Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.7897 (2) ŵ = 0.76 mm1
b = 13.2457 (3) ÅT = 100 K
c = 15.6436 (4) Å0.60 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3786 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3766 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.914Rint = 0.034
11202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.64 e Å3
S = 1.08Δρmin = 0.26 e Å3
3786 reflectionsAbsolute structure: Flack (1983), 1403 Friedel pairs
379 parametersAbsolute structure parameter: 0.05 (18)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.32699 (15)0.27923 (12)0.80027 (10)0.0186 (3)
C30.26044 (15)0.37581 (12)0.76650 (10)0.0195 (3)
C3A0.33279 (15)0.39156 (12)0.68341 (11)0.0194 (3)
C40.30763 (17)0.44534 (13)0.60975 (11)0.0229 (4)
C50.39516 (18)0.44605 (14)0.54394 (11)0.0253 (4)
C60.50732 (17)0.39574 (14)0.55266 (12)0.0246 (4)
C70.53572 (16)0.34468 (13)0.62767 (11)0.0220 (4)
C7A0.44724 (15)0.34255 (12)0.69104 (10)0.0182 (3)
C80.29907 (16)0.46075 (12)0.82645 (11)0.0211 (4)
C90.34100 (16)0.44460 (12)0.90560 (11)0.0210 (3)
C100.33551 (16)0.34357 (13)0.94788 (11)0.0214 (3)
C120.28689 (15)0.16359 (13)0.91257 (11)0.0190 (3)
C130.26417 (14)0.11484 (12)0.82818 (10)0.0187 (3)
C150.27783 (15)0.12521 (13)0.99230 (11)0.0200 (3)
C160.24075 (15)0.02576 (13)1.01914 (10)0.0204 (3)
C180.18204 (17)0.13354 (13)1.01993 (11)0.0233 (4)
C200.24315 (17)0.01288 (13)1.10109 (11)0.0231 (3)
C210.11422 (16)0.36829 (14)0.75912 (12)0.0245 (4)
C220.07620 (17)0.30327 (15)0.68323 (13)0.0292 (4)
C230.0179 (2)0.23927 (19)0.68053 (16)0.0467 (6)
H23A0.06940.23060.72930.056*
H23B0.03410.20200.62990.056*
C240.06073 (19)0.47547 (16)0.74467 (14)0.0319 (4)
C250.05692 (16)0.32850 (15)0.84208 (12)0.0281 (4)
H25A0.03300.33870.84070.042*
H25B0.09210.36500.89080.042*
H25C0.07500.25630.84780.042*
C260.38241 (19)0.61629 (14)0.92987 (12)0.0261 (4)
C270.62470 (18)0.21991 (16)0.83731 (13)0.0304 (4)
N10.45699 (13)0.29884 (10)0.77360 (9)0.0185 (3)
N110.32034 (13)0.26396 (10)0.89240 (9)0.0194 (3)
N140.28079 (13)0.18525 (10)0.76808 (9)0.0192 (3)
N170.19945 (13)0.05261 (11)0.96885 (9)0.0211 (3)
N190.20655 (14)0.11236 (11)1.10046 (9)0.0243 (3)
O10.52932 (11)0.20898 (8)0.77451 (8)0.0220 (3)
O90.38366 (12)0.51505 (9)0.96104 (8)0.0242 (3)
O100.33924 (13)0.33375 (10)1.02538 (8)0.0297 (3)
O130.23426 (11)0.02613 (9)0.81455 (7)0.0227 (3)
H40.230 (2)0.4816 (18)0.6029 (14)0.036 (6)*
H50.3779 (19)0.4836 (16)0.4900 (13)0.023 (5)*
H60.5638 (17)0.3927 (14)0.5057 (12)0.015 (4)*
H70.613 (2)0.3112 (16)0.6374 (13)0.026 (5)*
H80.2979 (17)0.5235 (15)0.8010 (12)0.015 (4)*
H140.284 (2)0.1668 (17)0.7172 (15)0.027 (5)*
H150.3009 (18)0.1647 (16)1.0401 (13)0.021 (5)*
H170.198 (2)0.0459 (17)0.9125 (15)0.029 (5)*
H180.1494 (17)0.1977 (14)0.9977 (12)0.016 (4)*
H200.269 (2)0.0184 (16)1.1564 (14)0.028 (5)*
H220.118 (3)0.318 (2)0.6324 (17)0.050 (7)*
H24A0.095 (2)0.5062 (18)0.6938 (15)0.037 (6)*
H24B0.080 (2)0.522 (2)0.7904 (16)0.042 (7)*
H24C0.028 (3)0.4672 (19)0.7331 (16)0.045 (7)*
H26A0.4374 (17)0.6236 (14)0.8794 (12)0.015 (4)*
H26B0.412 (2)0.6584 (18)0.9782 (16)0.040 (6)*
H26C0.294 (2)0.6392 (17)0.9142 (14)0.029 (5)*
H27A0.676 (2)0.2766 (19)0.8265 (15)0.035 (6)*
H27B0.668 (2)0.1612 (18)0.8349 (15)0.033 (6)*
H27C0.590 (2)0.2315 (17)0.8929 (14)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0247 (8)0.0158 (7)0.0153 (8)0.0008 (6)0.0003 (6)0.0016 (6)
C30.0253 (8)0.0165 (7)0.0166 (8)0.0022 (6)0.0003 (6)0.0005 (6)
C3A0.0255 (8)0.0138 (7)0.0189 (8)0.0011 (7)0.0012 (7)0.0018 (6)
C40.0291 (9)0.0183 (8)0.0213 (8)0.0007 (7)0.0043 (7)0.0012 (7)
C50.0352 (9)0.0207 (9)0.0199 (8)0.0039 (7)0.0023 (7)0.0046 (7)
C60.0305 (9)0.0223 (9)0.0210 (8)0.0057 (7)0.0028 (7)0.0005 (7)
C70.0258 (8)0.0180 (8)0.0223 (8)0.0022 (7)0.0005 (7)0.0026 (7)
C7A0.0259 (8)0.0120 (7)0.0167 (7)0.0028 (6)0.0016 (6)0.0026 (6)
C80.0273 (8)0.0132 (8)0.0229 (9)0.0008 (6)0.0041 (7)0.0003 (7)
C90.0258 (8)0.0165 (8)0.0206 (8)0.0009 (7)0.0045 (7)0.0040 (7)
C100.0286 (8)0.0174 (8)0.0181 (8)0.0010 (7)0.0014 (7)0.0034 (6)
C120.0215 (7)0.0157 (7)0.0198 (8)0.0002 (6)0.0017 (6)0.0014 (7)
C130.0209 (7)0.0170 (8)0.0181 (8)0.0009 (6)0.0005 (6)0.0001 (6)
C150.0252 (8)0.0173 (8)0.0176 (8)0.0007 (7)0.0001 (6)0.0023 (6)
C160.0241 (8)0.0191 (8)0.0179 (8)0.0003 (7)0.0006 (6)0.0021 (7)
C180.0310 (8)0.0176 (8)0.0213 (8)0.0049 (7)0.0007 (7)0.0020 (7)
C200.0306 (8)0.0199 (8)0.0190 (8)0.0018 (7)0.0005 (7)0.0003 (7)
C210.0238 (8)0.0233 (9)0.0264 (9)0.0050 (7)0.0002 (7)0.0004 (7)
C220.0275 (9)0.0345 (10)0.0257 (9)0.0009 (8)0.0031 (8)0.0011 (8)
C230.0451 (12)0.0505 (13)0.0446 (13)0.0061 (11)0.0018 (11)0.0054 (11)
C240.0290 (10)0.0293 (10)0.0374 (11)0.0085 (8)0.0022 (8)0.0036 (10)
C250.0258 (8)0.0300 (9)0.0286 (9)0.0006 (7)0.0018 (7)0.0002 (8)
C260.0373 (10)0.0160 (9)0.0250 (9)0.0044 (8)0.0029 (8)0.0023 (7)
C270.0309 (9)0.0292 (10)0.0310 (11)0.0080 (8)0.0100 (8)0.0010 (8)
N10.0244 (7)0.0121 (6)0.0189 (7)0.0027 (5)0.0004 (6)0.0024 (5)
N110.0274 (7)0.0149 (7)0.0161 (7)0.0006 (5)0.0004 (5)0.0001 (5)
N140.0280 (7)0.0152 (7)0.0145 (7)0.0004 (5)0.0012 (5)0.0016 (5)
N170.0273 (7)0.0195 (7)0.0164 (7)0.0026 (6)0.0004 (6)0.0009 (6)
N190.0329 (7)0.0188 (7)0.0211 (7)0.0022 (6)0.0019 (6)0.0027 (6)
O10.0284 (6)0.0152 (6)0.0222 (6)0.0062 (5)0.0023 (5)0.0006 (5)
O90.0369 (6)0.0156 (6)0.0202 (6)0.0040 (5)0.0016 (5)0.0021 (5)
O100.0526 (8)0.0206 (6)0.0159 (6)0.0076 (6)0.0019 (6)0.0022 (5)
O130.0340 (6)0.0157 (6)0.0184 (6)0.0052 (5)0.0009 (5)0.0011 (5)
Geometric parameters (Å, º) top
O1—N11.4233 (17)C12—C131.490 (2)
O1—C271.430 (2)C12—C151.350 (2)
O9—C91.354 (2)C15—C161.439 (2)
O9—C261.427 (2)C16—C201.381 (2)
O10—C101.220 (2)C21—C221.523 (3)
O13—C131.237 (2)C21—C241.549 (3)
N1—C21.486 (2)C21—C251.531 (2)
N1—C7A1.419 (2)C22—C231.324 (3)
N11—C21.457 (2)C4—H40.97 (3)
N11—C101.375 (2)C5—H51.00 (2)
N11—C121.413 (2)C6—H60.955 (19)
N14—C21.432 (2)C7—H70.95 (2)
N14—C131.336 (2)C8—H80.92 (2)
N17—C161.377 (2)C15—H150.95 (2)
N17—C181.350 (2)C18—H180.984 (19)
N19—C181.317 (2)C20—H201.00 (2)
N19—C201.376 (2)C22—H220.93 (3)
N14—H140.83 (2)C23—H23A0.9500
N17—H170.89 (2)C23—H23B0.9500
C2—C31.559 (2)C24—H24A0.97 (2)
C3—C3A1.531 (2)C24—H24B0.97 (3)
C3—C81.523 (2)C24—H24C0.98 (3)
C3—C211.585 (2)C25—H25A0.9800
C3A—C41.382 (2)C25—H25B0.9800
C3A—C7A1.400 (2)C25—H25C0.9800
C4—C51.397 (3)C26—H26A0.993 (19)
C5—C61.388 (3)C26—H26B0.99 (2)
C6—C71.389 (3)C26—H26C1.03 (2)
C7—C7A1.377 (2)C27—H27A0.95 (2)
C8—C91.336 (2)C27—H27B0.91 (2)
C9—C101.494 (2)C27—H27C0.96 (2)
N1—O1—C27108.47 (12)N11—C12—C13104.59 (13)
C9—O9—C26115.18 (13)N11—C12—C15125.37 (16)
O1—N1—C2111.62 (12)C13—C12—C15130.04 (15)
O1—N1—C7A113.01 (12)O13—C13—N14125.21 (15)
C2—N1—C7A104.88 (12)O13—C13—C12127.39 (15)
C2—N11—C10120.79 (14)N14—C13—C12107.39 (13)
C2—N11—C12111.34 (13)C12—C15—C16129.35 (16)
C10—N11—C12127.64 (14)C12—C15—H15120.2 (13)
C2—N14—C13113.94 (14)C16—C15—H15110.4 (13)
C2—N14—H14125.3 (16)N17—C16—C15127.83 (15)
C13—N14—H14118.2 (16)N17—C16—C20104.91 (14)
C16—N17—C18107.78 (14)C15—C16—C20127.23 (16)
C16—N17—H17120.0 (15)N17—C18—N19111.65 (15)
C18—N17—H17131.7 (15)N17—C18—H18121.8 (11)
C18—N19—C20105.57 (15)N19—C18—H18126.4 (11)
N1—C2—N11110.39 (13)N19—C20—C16110.06 (15)
N1—C2—N14112.43 (13)N19—C20—H20118.9 (12)
N1—C2—C3101.31 (12)C16—C20—H20131.0 (12)
N11—C2—N14102.12 (13)C3—C21—C22111.13 (14)
N11—C2—C3115.23 (13)C3—C21—C25111.21 (14)
N14—C2—C3115.70 (13)C3—C21—C24108.89 (15)
C2—C3—C3A99.48 (13)C22—C21—C24107.71 (15)
C2—C3—C8105.75 (13)C22—C21—C25110.94 (15)
C2—C3—C21115.56 (14)C24—C21—C25106.77 (15)
C3A—C3—C8106.43 (13)C21—C22—C23126.4 (2)
C3A—C3—C21117.03 (14)C21—C22—H22114.8 (17)
C8—C3—C21111.33 (14)C23—C22—H22118.2 (17)
C3—C3A—C4132.71 (16)C22—C23—H23A120.0
C3—C3A—C7A108.31 (14)C22—C23—H23B120.0
C4—C3A—C7A118.92 (16)H23A—C23—H23B120.0
C3A—C4—C5119.03 (17)C21—C24—H24A111.4 (14)
C3A—C4—H4121.0 (14)C21—C24—H24B113.5 (15)
C5—C4—H4119.9 (14)H24A—C24—H24B104.9 (19)
C4—C5—C6120.91 (16)C21—C24—H24C106.7 (15)
C4—C5—H5120.0 (12)H24A—C24—H24C105 (2)
C6—C5—H5119.0 (12)H24B—C24—H24C115 (2)
C5—C6—C7120.61 (17)C21—C25—H25A109.5
C5—C6—H6120.1 (11)C21—C25—H25B109.5
C7—C6—H6119.2 (11)C21—C25—H25C109.5
C6—C7—C7A117.74 (16)H25A—C25—H25B109.5
C6—C7—H7123.6 (13)H25A—C25—H25C109.5
C7A—C7—H7118.6 (13)H25B—C25—H25C109.5
N1—C7A—C3A109.40 (14)O9—C26—H26A111.0 (11)
N1—C7A—C7127.75 (15)O9—C26—H26B105.4 (14)
C3A—C7A—C7122.73 (15)O9—C26—H26C111.6 (13)
C3—C8—C9123.06 (15)H26A—C26—H26B111.1 (18)
C3—C8—H8113.4 (11)H26A—C26—H26C109.5 (16)
C9—C8—H8123.3 (12)H26B—C26—H26C108.2 (19)
O9—C9—C8126.76 (16)O1—C27—H27A112.0 (14)
O9—C9—C10110.32 (14)O1—C27—H27B104.8 (14)
C8—C9—C10122.71 (15)O1—C27—H27C111.2 (13)
O10—C10—N11123.31 (16)H27A—C27—H27B112.0 (19)
O10—C10—C9122.29 (15)H27A—C27—H27C105.0 (19)
N11—C10—C9114.34 (14)H27B—C27—H27C112.0 (19)
C2—N1—O1—C27116.05 (15)C12—C15—C16—N173.6 (3)
C7A—N1—O1—C27126.02 (15)C12—C15—C16—C20173.90 (17)
C8—C9—O9—C260.1 (2)N17—C16—C20—N191.06 (19)
C10—C9—O9—C26174.67 (15)C15—C16—C20—N19176.90 (16)
C3—C21—C22—C23142.1 (2)C8—C3—C21—C22165.31 (14)
C24—C21—C22—C2398.7 (2)C3A—C3—C21—C2242.6 (2)
C25—C21—C22—C2317.8 (3)C2—C3—C21—C2274.04 (19)
N14—C2—C3—C8164.60 (14)C8—C3—C21—C2570.57 (19)
N11—C2—C3—C845.63 (18)C3A—C3—C21—C25166.75 (14)
N1—C2—C3—C873.52 (15)C2—C3—C21—C2550.1 (2)
N14—C2—C3—C3A85.22 (16)C8—C3—C21—C2446.82 (19)
N11—C2—C3—C3A155.80 (14)C3A—C3—C21—C2475.86 (19)
N1—C2—C3—C3A36.66 (15)C2—C3—C21—C24167.47 (15)
N14—C2—C3—C2141.0 (2)C7—C7A—N1—O135.1 (2)
N11—C2—C3—C2178.00 (18)C3A—C7A—N1—O1148.75 (13)
N1—C2—C3—C21162.85 (14)C7—C7A—N1—C2156.93 (16)
C8—C3—C3A—C489.6 (2)C3A—C7A—N1—C226.94 (16)
C2—C3—C3A—C4160.80 (18)N14—C2—N1—C7A84.27 (15)
C21—C3—C3A—C435.6 (3)N11—C2—N1—C7A162.41 (12)
C8—C3—C3A—C7A87.46 (16)C3—C2—N1—C7A39.85 (15)
C2—C3—C3A—C7A22.17 (16)N14—C2—N1—O138.44 (17)
C21—C3—C3A—C7A147.36 (14)N11—C2—N1—O174.88 (16)
C7A—C3A—C4—C52.4 (2)C3—C2—N1—O1162.57 (12)
C3—C3A—C4—C5179.14 (17)O10—C10—N11—C1211.2 (3)
C3A—C4—C5—C61.6 (3)C9—C10—N11—C12165.97 (16)
C4—C5—C6—C70.9 (3)O10—C10—N11—C2174.82 (17)
C5—C6—C7—C7A2.5 (3)C9—C10—N11—C28.0 (2)
C6—C7—C7A—C3A1.7 (2)C15—C12—N11—C108.3 (3)
C6—C7—C7A—N1177.36 (15)C13—C12—N11—C10171.09 (15)
C4—C3A—C7A—C70.7 (2)C15—C12—N11—C2177.29 (16)
C3—C3A—C7A—C7178.25 (15)C13—C12—N11—C23.37 (17)
C4—C3A—C7A—N1175.62 (15)N14—C2—N11—C10168.15 (14)
C3—C3A—C7A—N11.89 (17)N1—C2—N11—C1072.10 (18)
C3A—C3—C8—C9126.85 (17)C3—C2—N11—C1041.9 (2)
C2—C3—C8—C921.7 (2)N14—C2—N11—C126.74 (17)
C21—C3—C8—C9104.56 (19)N1—C2—N11—C12113.01 (14)
C3—C8—C9—O9176.00 (16)C3—C2—N11—C12133.00 (14)
C3—C8—C9—C109.9 (3)O13—C13—N14—C2174.18 (15)
C8—C9—C10—O10158.30 (18)C12—C13—N14—C26.41 (18)
O9—C9—C10—O1016.7 (2)N11—C2—N14—C138.14 (18)
C8—C9—C10—N1118.9 (2)N1—C2—N14—C13110.17 (15)
O9—C9—C10—N11166.11 (14)C3—C2—N14—C13134.10 (15)
C15—C12—C13—O131.8 (3)N19—C18—N17—C161.5 (2)
N11—C12—C13—O13178.90 (15)C20—C16—N17—C181.49 (18)
C15—C12—C13—N14177.59 (17)C15—C16—N17—C18176.46 (16)
N11—C12—C13—N141.72 (17)N17—C18—N19—C200.8 (2)
N11—C12—C15—C16177.70 (16)C16—C20—N19—C180.2 (2)
C13—C12—C15—C161.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O130.89 (2)1.85 (2)2.6562 (19)151 (2)
N14—H14···N19i0.83 (2)1.97 (2)2.798 (2)175 (2)
C4—H4···O9ii0.97 (2)2.54 (2)3.154 (2)121.5 (16)
C20—H20···O13iii1.00 (2)2.54 (2)3.353 (2)137.9 (16)
C24—H24C···O13iv0.98 (3)2.47 (3)3.382 (2)154 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y, z+1/2; (iv) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H25N5O4
Mr447.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.7897 (2), 13.2457 (3), 15.6436 (4)
V3)2235.74 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.60 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.658, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
11202, 3786, 3766
Rint0.034
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.08
No. of reflections3786
No. of parameters379
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.26
Absolute structureFlack (1983), 1403 Friedel pairs
Absolute structure parameter0.05 (18)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O130.89 (2)1.85 (2)2.6562 (19)151 (2)
N14—H14···N19i0.83 (2)1.97 (2)2.798 (2)175 (2)
C4—H4···O9ii0.97 (2)2.54 (2)3.154 (2)121.5 (16)
C20—H20···O13iii1.00 (2)2.54 (2)3.353 (2)137.9 (16)
C24—H24C···O13iv0.98 (3)2.47 (3)3.382 (2)154 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y, z+1/2; (iv) x, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by grants from the NSFC (No. 21172204), the Special Fund for Marine Scientific Research in the Public Inter­est of China (No. 2010418022–3) and the PCSIRT (No. IRT0944).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoizumi, Y., Arai, M., Tomoda, H. & Omura, S. (2004). Biochim. Biophys. Acta, 1693, 47–55.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNagel, D. W., Pachler, K. G. R., Steyn, P. S., Wessels, P. L., Gafner, G. & Kruger, G. J. (1974). Chem. Commun. pp. 1021–1022.  CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, P. S. (1970). Tetrahedron, 26, 51–57.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds