organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(2-chloro­phen­yl)-6-(naph­thalen-1-yl)pyridine-3-carbo­nitrile

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 21 April 2012; accepted 8 May 2012; online 23 May 2012)

In the title compound, C22H14ClN3, prepared by a one-pot reaction under microwave irradiation, the dihedral angles between the central pyridine ring and the pendant naphthyl and chloro­benzene ring systems are 49.2 (2) and 58.2 (3)°, respectively. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops. The pyridine N atom is the acceptor.

Related literature

For the use of 2-amino-3-cyano­pyridines as inter­mediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983[Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611-4612.]). For the synthesis, see: Mantri et al. (2008[Mantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449-4455.]). For related structures, see: Mkhalid et al. (2006[Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489-491.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14ClN3

  • Mr = 355.81

  • Monoclinic, P 21 /n

  • a = 12.275 (3) Å

  • b = 4.6490 (9) Å

  • c = 30.887 (6) Å

  • β = 90.18 (3)°

  • V = 1762.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.956, Tmax = 0.978

  • 3397 measured reflections

  • 3236 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.185

  • S = 1.00

  • 3236 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.23 3.086 (5) 176
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 XPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, C22H14ClN3(1), is an intermediate in the synthesis of biologically active molecules (Shishoo et al., 1983; Mantri et al. 2008). Herein we report its crystal structure. The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. In the molecules,the naphthyl (C13—C22) and phenyl ring planes (C1—C6) form torsion angles 49.2 and 58.2 °, respectively, with the middle pyridyl ring plane. In the crystal, there are N—H···N hydrogen bonds, which connect the independent molecules into dimers (Fig. 2 and Tab. 1).

Related literature top

For the use of 2-amino-3-cyanopyridines as intermediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983). For the synthesis, see: Mantri et al. (2008). For related structures, see: Mkhalid et al. (2006).

Experimental top

For the prepartion of the title compound (1),a mixture of 2-chlorobenzaldehyde (2 mmol), malononitrile (2 mmol), 1-naphthal-dehyde (2 mmol) and ammonium acetate (16 mmol) was refluxed under microwave irradiation (6 min, WF-4000M microwave reaction system). After cooling to room temperature, the resulting solid product was filtered off and recrystallized from methanol to give the title compound. Colourless needles were obtained by dissolving the title compound (0.5 g) in methanol (20 ml) and slowly evaporating the solvent at room temperature for a period of about two weeks.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.86 Å and N—H = 0.93 Å for aromatic and amino H, and constrained to ride on their parent atoms,with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-Amino-4-(2-chlorophenyl)-6-(naphthalen-1-yl)pyridine-3-carbonitrile top
Crystal data top
C22H14ClN3F(000) = 736
Mr = 355.81Dx = 1.341 Mg m3
Monoclinic, P21/nMelting point: 421 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.275 (3) ÅCell parameters from 25 reflections
b = 4.6490 (9) Åθ = 9–12°
c = 30.887 (6) ŵ = 0.23 mm1
β = 90.18 (3)°T = 293 K
V = 1762.6 (6) Å3Needle, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1558 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.5°, θmin = 1.3°
ω/2θ scansh = 140
Absorption correction: ψ scan
(North et al., 1968)
k = 05
Tmin = 0.956, Tmax = 0.978l = 3737
3397 measured reflections3 standard reflections every 200 reflections
3236 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2 + 1.9P]
where P = (Fo2 + 2Fc2)/3
3236 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H14ClN3V = 1762.6 (6) Å3
Mr = 355.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.275 (3) ŵ = 0.23 mm1
b = 4.6490 (9) ÅT = 293 K
c = 30.887 (6) Å0.20 × 0.10 × 0.10 mm
β = 90.18 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1558 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.956, Tmax = 0.9783 standard reflections every 200 reflections
3397 measured reflections intensity decay: 1%
3236 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
3236 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.31710 (12)0.7045 (4)0.20602 (4)0.0872 (5)
N10.4498 (3)0.3780 (9)0.05627 (11)0.0550 (10)
C10.6080 (4)0.3185 (13)0.20923 (15)0.0773 (16)
H1B0.65710.23350.19030.093*
N20.6054 (3)0.6314 (10)0.04127 (11)0.0763 (14)
H2A0.58970.61890.01420.092*
H2B0.66350.71980.04940.092*
C20.6330 (5)0.3305 (14)0.25299 (16)0.0863 (18)
H2C0.69810.25320.26320.104*
N30.7314 (4)0.8313 (12)0.13555 (14)0.0968 (17)
C30.5613 (5)0.4568 (15)0.28131 (17)0.090 (2)
H3A0.57790.46800.31070.109*
C40.4654 (5)0.5656 (13)0.26593 (15)0.0814 (17)
H4A0.41620.64750.28510.098*
C50.4402 (4)0.5563 (11)0.22255 (14)0.0634 (13)
C60.5115 (4)0.4305 (11)0.19312 (13)0.0578 (13)
C70.4887 (4)0.4158 (11)0.14580 (14)0.0579 (13)
C80.3990 (4)0.2782 (11)0.12958 (13)0.0597 (13)
H8A0.34990.19260.14850.072*
C90.3800 (3)0.2645 (10)0.08536 (13)0.0507 (11)
C100.5383 (4)0.5115 (11)0.07123 (14)0.0542 (12)
C110.5606 (3)0.5421 (11)0.11589 (14)0.0568 (12)
C120.6549 (4)0.7022 (13)0.12856 (14)0.0673 (15)
C130.2812 (4)0.1290 (10)0.06732 (14)0.0533 (12)
C140.1748 (4)0.1886 (11)0.08349 (14)0.0577 (13)
C150.1539 (4)0.3973 (12)0.11570 (15)0.0682 (14)
H15A0.21130.50150.12760.082*
C160.0499 (5)0.4471 (14)0.12953 (18)0.0842 (17)
H16A0.03790.58480.15080.101*
C170.0383 (5)0.2979 (16)0.11261 (19)0.090 (2)
H17A0.10830.33440.12260.108*
C180.0217 (4)0.0997 (14)0.08151 (19)0.0807 (17)
H18A0.08080.00070.07020.097*
C190.0835 (4)0.0418 (12)0.06576 (16)0.0629 (13)
C200.1015 (4)0.1567 (12)0.03181 (17)0.0735 (15)
H20A0.04250.25590.02020.088*
C210.2025 (4)0.2061 (11)0.01577 (15)0.0679 (14)
H21A0.21180.33340.00710.082*
C220.2927 (4)0.0649 (11)0.03379 (15)0.0613 (13)
H22A0.36180.10270.02290.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0919 (10)0.1025 (12)0.0674 (9)0.0187 (9)0.0206 (7)0.0003 (8)
N10.057 (2)0.066 (3)0.042 (2)0.005 (2)0.0057 (17)0.003 (2)
C10.086 (4)0.095 (4)0.051 (3)0.012 (3)0.004 (3)0.004 (3)
N20.065 (3)0.118 (4)0.046 (2)0.017 (3)0.0128 (19)0.002 (3)
C20.100 (4)0.106 (5)0.052 (3)0.009 (4)0.012 (3)0.006 (4)
N30.075 (3)0.137 (5)0.079 (3)0.029 (3)0.009 (3)0.024 (3)
C30.100 (5)0.123 (6)0.049 (3)0.024 (4)0.007 (3)0.008 (4)
C40.105 (4)0.100 (5)0.039 (3)0.011 (4)0.013 (3)0.007 (3)
C50.073 (3)0.072 (4)0.045 (3)0.006 (3)0.011 (2)0.002 (3)
C60.073 (3)0.064 (3)0.036 (2)0.002 (3)0.006 (2)0.001 (2)
C70.064 (3)0.066 (3)0.043 (3)0.009 (3)0.003 (2)0.000 (2)
C80.069 (3)0.072 (3)0.038 (2)0.004 (3)0.009 (2)0.002 (3)
C90.057 (3)0.053 (3)0.042 (2)0.006 (2)0.009 (2)0.008 (2)
C100.050 (3)0.069 (3)0.044 (3)0.006 (3)0.007 (2)0.000 (2)
C110.051 (3)0.074 (3)0.046 (3)0.006 (3)0.006 (2)0.008 (3)
C120.066 (3)0.094 (4)0.041 (3)0.001 (3)0.007 (2)0.012 (3)
C130.060 (3)0.057 (3)0.042 (2)0.004 (3)0.000 (2)0.011 (2)
C140.057 (3)0.066 (3)0.050 (3)0.005 (3)0.011 (2)0.021 (3)
C150.069 (3)0.080 (4)0.056 (3)0.003 (3)0.010 (2)0.015 (3)
C160.083 (4)0.100 (5)0.069 (4)0.020 (4)0.016 (3)0.009 (3)
C170.067 (4)0.121 (6)0.083 (4)0.021 (4)0.019 (3)0.031 (4)
C180.058 (3)0.092 (5)0.092 (4)0.000 (3)0.004 (3)0.027 (4)
C190.062 (3)0.062 (3)0.064 (3)0.001 (3)0.001 (2)0.018 (3)
C200.070 (3)0.071 (4)0.080 (4)0.001 (3)0.014 (3)0.007 (3)
C210.090 (4)0.063 (3)0.051 (3)0.007 (3)0.004 (3)0.003 (3)
C220.063 (3)0.063 (3)0.058 (3)0.001 (3)0.007 (2)0.007 (3)
Geometric parameters (Å, º) top
Cl—C51.736 (5)C9—C131.475 (6)
N1—C101.332 (5)C10—C111.413 (6)
N1—C91.351 (5)C11—C121.429 (7)
C1—C61.385 (6)C13—C221.380 (6)
C1—C21.386 (6)C13—C141.427 (6)
C1—H1B0.9300C14—C151.414 (7)
N2—C101.360 (5)C14—C191.421 (6)
N2—H2A0.8600C15—C161.367 (6)
N2—H2B0.8600C15—H15A0.9300
C2—C31.375 (7)C16—C171.386 (8)
C2—H2C0.9300C16—H16A0.9300
N3—C121.134 (6)C17—C181.347 (8)
C3—C41.365 (7)C17—H17A0.9300
C3—H3A0.9300C18—C191.407 (6)
C4—C51.375 (6)C18—H18A0.9300
C4—H4A0.9300C19—C201.414 (7)
C5—C61.392 (6)C20—C211.356 (6)
C6—C71.489 (6)C20—H20A0.9300
C7—C81.367 (6)C21—C221.401 (6)
C7—C111.408 (6)C21—H21A0.9300
C8—C91.386 (5)C22—H22A0.9300
C8—H8A0.9300
C10—N1—C9118.0 (4)C7—C11—C10118.6 (4)
C6—C1—C2121.4 (5)C7—C11—C12123.1 (4)
C6—C1—H1B119.3C10—C11—C12118.3 (4)
C2—C1—H1B119.3N3—C12—C11175.1 (5)
C10—N2—H2A120.0C22—C13—C14119.0 (4)
C10—N2—H2B120.0C22—C13—C9118.5 (4)
H2A—N2—H2B120.0C14—C13—C9122.5 (4)
C3—C2—C1119.8 (5)C15—C14—C19117.1 (4)
C3—C2—H2C120.1C15—C14—C13123.2 (5)
C1—C2—H2C120.1C19—C14—C13119.6 (5)
C4—C3—C2119.3 (5)C16—C15—C14120.5 (5)
C4—C3—H3A120.3C16—C15—H15A119.7
C2—C3—H3A120.3C14—C15—H15A119.7
C3—C4—C5121.3 (5)C15—C16—C17121.7 (6)
C3—C4—H4A119.4C15—C16—H16A119.1
C5—C4—H4A119.4C17—C16—H16A119.1
C4—C5—C6120.6 (5)C18—C17—C16119.4 (5)
C4—C5—Cl117.8 (4)C18—C17—H17A120.3
C6—C5—Cl121.5 (4)C16—C17—H17A120.3
C1—C6—C5117.5 (4)C17—C18—C19121.2 (6)
C1—C6—C7119.5 (4)C17—C18—H18A119.4
C5—C6—C7122.9 (4)C19—C18—H18A119.4
C8—C7—C11117.4 (4)C18—C19—C20121.8 (5)
C8—C7—C6122.0 (4)C18—C19—C14119.9 (5)
C11—C7—C6120.6 (4)C20—C19—C14118.3 (5)
C7—C8—C9121.0 (4)C21—C20—C19121.8 (5)
C7—C8—H8A119.5C21—C20—H20A119.1
C9—C8—H8A119.5C19—C20—H20A119.1
N1—C9—C8122.2 (4)C20—C21—C22119.9 (5)
N1—C9—C13116.0 (4)C20—C21—H21A120.1
C8—C9—C13121.8 (4)C22—C21—H21A120.1
N1—C10—N2116.7 (4)C13—C22—C21121.4 (5)
N1—C10—C11122.8 (4)C13—C22—H22A119.3
N2—C10—C11120.5 (4)C21—C22—H22A119.3
C6—C1—C2—C30.3 (9)N1—C10—C11—C12176.8 (5)
C1—C2—C3—C40.9 (9)N2—C10—C11—C120.1 (7)
C2—C3—C4—C51.3 (10)C7—C11—C12—N3178 (7)
C3—C4—C5—C61.1 (9)C10—C11—C12—N33 (7)
C3—C4—C5—Cl179.2 (5)N1—C9—C13—C2248.9 (6)
C2—C1—C6—C50.1 (8)C8—C9—C13—C22132.1 (5)
C2—C1—C6—C7179.3 (5)N1—C9—C13—C14131.7 (4)
C4—C5—C6—C10.5 (8)C8—C9—C13—C1447.3 (6)
Cl—C5—C6—C1179.8 (4)C22—C13—C14—C15175.7 (4)
C4—C5—C6—C7179.6 (5)C9—C13—C14—C155.0 (7)
Cl—C5—C6—C70.7 (7)C22—C13—C14—C191.8 (6)
C1—C6—C7—C8121.2 (6)C9—C13—C14—C19177.5 (4)
C5—C6—C7—C859.7 (7)C19—C14—C15—C161.6 (7)
C1—C6—C7—C1158.1 (7)C13—C14—C15—C16179.2 (4)
C5—C6—C7—C11121.1 (5)C14—C15—C16—C170.3 (8)
C11—C7—C8—C90.0 (7)C15—C16—C17—C180.5 (9)
C6—C7—C8—C9179.3 (4)C16—C17—C18—C190.2 (9)
C10—N1—C9—C81.3 (7)C17—C18—C19—C20177.2 (5)
C10—N1—C9—C13177.7 (4)C17—C18—C19—C141.6 (8)
C7—C8—C9—N11.8 (7)C15—C14—C19—C182.2 (7)
C7—C8—C9—C13177.1 (5)C13—C14—C19—C18179.9 (4)
C9—N1—C10—N2178.0 (4)C15—C14—C19—C20176.6 (4)
C9—N1—C10—C111.0 (7)C13—C14—C19—C201.1 (7)
C8—C7—C11—C102.1 (7)C18—C19—C20—C21178.0 (5)
C6—C7—C11—C10177.1 (4)C14—C19—C20—C210.8 (7)
C8—C7—C11—C12177.4 (5)C19—C20—C21—C221.9 (8)
C6—C7—C11—C123.4 (7)C14—C13—C22—C210.7 (7)
N1—C10—C11—C72.7 (7)C9—C13—C22—C21178.6 (4)
N2—C10—C11—C7179.6 (4)C20—C21—C22—C131.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.233.086 (5)176
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H14ClN3
Mr355.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.275 (3), 4.6490 (9), 30.887 (6)
β (°) 90.18 (3)
V3)1762.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.956, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
3397, 3236, 1558
Rint0.057
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.185, 1.00
No. of reflections3236
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.233.086 (5)176
Symmetry code: (i) x+1, y+1, z.
 

References

First citationEnraf–Nonius (1994). CAD-4 XPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611–4612.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds