organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N-{4-[(4-meth­­oxy­phen­­oxy)meth­yl]-2-oxo-2H-chromen-7-yl}carbamate

aDepartment of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 23 April 2012; accepted 7 May 2012; online 16 May 2012)

In the title compound, C19H17NO6, the dihedral angle between the 2H-chromene ring system and benzene ring is 5.34 (6)°. A short intra­molecular C—H⋯O contact occurs. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(8) chains propagating in [010]. The chains are linked by C—H⋯O inter­actions and the packing also exhibits ππ stacking inter­actions between benzene and pyran rings, with a centroid–centroid distance of 3.676 (9) Å.

Related literature

For a related structure and background to coumarins, see: Mahabaleshwaraiah et al. (2012[Mahabaleshwaraiah, N. M., Kumar, K. M., Kotresh, O., Al-eryani, W. F. A. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o1566.]). For further synthetic details, see: Kulkarni & Patil (1981[Kulkarni, M. V. & Patil, V. D. (1981). Arch. Pharm. 314, 708-710.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO6

  • Mr = 355.34

  • Monoclinic, P 21 /n

  • a = 8.3141 (1) Å

  • b = 17.3978 (3) Å

  • c = 11.5729 (2) Å

  • β = 94.309 (1)°

  • V = 1669.25 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 14973 measured reflections

  • 2939 independent reflections

  • 2374 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.06

  • 2939 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O2i 0.86 1.99 2.8428 (16) 170
C15—H15⋯O5 0.93 2.30 2.8764 (19) 120
C19—H19A⋯O5ii 0.97 2.53 3.476 (2) 165
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of coumarin derivatives with possible biological activity (Mahabaleshwaraiah et al., 2012), we now describe the structure of the title compound (Fig. 1).

The 2H-chromene (O1/C10–C18) and benzene (C20–C25) rings are almost coplanar; the dihedral angle between them is 5.34 (6)°. In the crystal, (Fig. 2), the molecules are connected by C19—H19A···O5 and N7—H7···O2 interaction hydrogen bonds.(Table 1) Furthermore, the crystal structure features π-π stacking interactions between pyranCg2 and benzeneCg3 rings, with a centroid Cg2 (O3/C12–C16) -centroid Cg3 (C13/C14/C17–C20) distance of 3.676 (9) Å.

Related literature top

For a related structure and background to coumarins, see: Mahabaleshwaraiah et al. (2012). For further synthetic details, see: Kulkarni & Patil (1981).

Experimental top

The 4-bromomethyl coumarin required for the target molecule was synthesized according to an already reported (Kulkarni et al.1981) procedure involving Pechmann cyclization of phenols with 4-bromoethylacetoacetate. A mixture of 1.56 g (0.005 mol) of 7-carbonylamino-4-bromomethyl coumarin, 0.620 g (0.005 mol) of p-methoxy phenol and 0.70 g (0.005 mol) of powdered anhydrous K2CO3 in 30 ml of dry acetone were stirred at room temperature for 24 h. After completion of the reaction, the s eparated solid was filtered, washed with excess of dilute (10%) hydrochloric acid (50 ml) and then with an excess of cold water, dried and crystallized twice from ethanol & 1,4-dioxane mixture to yield colourless plates. Yield= 78%, M. P.475 K.

Refinement top

All H atoms were positioned at calculated positions N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methelene H and C—H = 0.96 Å for methyl H and refined using a riding model with Uiso(H) = 1.5Ueq(C)for methyl H and Uiso(H) = 1.2Ueq(C,N)for other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The packing of the molecules in the title structure.
Methyl N-{4-[(4-methoxyphenoxy)methyl]-2-oxo-2H-chromen-7-yl}carbamate top
Crystal data top
C19H17NO6F(000) = 744
Mr = 355.34Dx = 1.414 Mg m3
Monoclinic, P21/nMelting point: 475 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.3141 (1) ÅCell parameters from 2939 reflections
b = 17.3978 (3) Åθ = 2.1–25.0°
c = 11.5729 (2) ŵ = 0.11 mm1
β = 94.309 (1)°T = 293 K
V = 1669.25 (5) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2939 independent reflections
Radiation source: fine-focus sealed tube2374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 99
Tmin = 0.770, Tmax = 1.000k = 2020
14973 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.2287P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2939 reflectionsΔρmax = 0.14 e Å3
238 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (9)
Crystal data top
C19H17NO6V = 1669.25 (5) Å3
Mr = 355.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3141 (1) ŵ = 0.11 mm1
b = 17.3978 (3) ÅT = 293 K
c = 11.5729 (2) Å0.24 × 0.20 × 0.12 mm
β = 94.309 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2374 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.023
14973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
2939 reflectionsΔρmin = 0.12 e Å3
238 parameters
Special details top

Experimental. IR(KBr): 1067 cm-1(C—O—C), 1697 cm-1 (NH—C=O), 1727 cm-1 (Coumarin C=O), 3261 cm-1 (NH). GCMS: m/e: 355.1H NMR (500 MHz, DMSO.D6, \?, p.p.m.): 3.34 (s,3H, C13), 3.696(s,3H, C1), 5.2 (s,2H, C6), 6.38 (s 1H, C17), 6.88 (d,2H, C3 & C15), 7.04 (s,2H, C4 & C14), 7.38 (s,1H, C19), 7.56 (s,1H, C10),7.74 (s,1H, C18). Elemental analysis: C, 64.20; H, 4.78; N, 3.91; O, 27.19.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22869 (12)0.25228 (5)0.17803 (9)0.0546 (3)
O20.29518 (15)0.36749 (6)0.12426 (11)0.0719 (4)
O30.75136 (12)0.21340 (6)0.00648 (10)0.0625 (3)
O41.32758 (14)0.12805 (7)0.16477 (12)0.0738 (4)
O50.16647 (14)0.08777 (7)0.31601 (12)0.0798 (4)
O60.15645 (12)0.02844 (7)0.40139 (10)0.0651 (3)
N70.05554 (14)0.01046 (7)0.31564 (11)0.0551 (3)
H70.08870.03470.33590.066*
C80.3183 (2)0.01795 (12)0.43264 (17)0.0758 (5)
H8A0.32530.02910.47530.114*
H8B0.34800.06030.47980.114*
H8C0.39010.01570.36380.114*
C90.09510 (18)0.02930 (9)0.34198 (14)0.0547 (4)
C100.16316 (16)0.05609 (8)0.25940 (12)0.0482 (3)
C110.30076 (18)0.02083 (9)0.22107 (14)0.0556 (4)
H110.31570.03180.23160.067*
C120.41361 (18)0.06269 (9)0.16825 (14)0.0548 (4)
H120.50410.03800.14350.066*
C130.39578 (16)0.14200 (8)0.15063 (12)0.0465 (3)
C140.25774 (17)0.17482 (8)0.18963 (12)0.0468 (3)
C150.14222 (17)0.13397 (8)0.24295 (13)0.0503 (4)
H150.05150.15860.26750.060*
C160.33358 (18)0.30026 (9)0.12863 (14)0.0544 (4)
C170.47631 (18)0.26706 (9)0.08719 (14)0.0534 (4)
H170.54910.29870.05270.064*
C180.50789 (16)0.19144 (8)0.09682 (12)0.0486 (4)
C190.65617 (17)0.15584 (9)0.05426 (14)0.0543 (4)
H19A0.71780.13060.11790.065*
H19B0.62600.11750.00420.065*
C200.89376 (17)0.18941 (9)0.03564 (13)0.0515 (4)
C210.94292 (19)0.11408 (9)0.04124 (15)0.0598 (4)
H210.87820.07510.01520.072*
C221.08779 (19)0.09621 (9)0.08528 (15)0.0612 (4)
H221.12000.04510.08850.073*
C231.18506 (18)0.15266 (9)0.12443 (13)0.0547 (4)
C241.13658 (18)0.22857 (9)0.11907 (13)0.0563 (4)
H241.20150.26740.14530.068*
C250.99133 (18)0.24652 (9)0.07463 (13)0.0552 (4)
H250.95910.29760.07100.066*
C261.4187 (2)0.18198 (11)0.22267 (18)0.0783 (5)
H26A1.35340.20340.28660.118*
H26B1.51100.15700.25090.118*
H26C1.45380.22230.17000.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0545 (6)0.0394 (6)0.0714 (7)0.0001 (4)0.0157 (5)0.0011 (5)
O20.0771 (8)0.0378 (6)0.1031 (10)0.0030 (5)0.0219 (7)0.0017 (6)
O30.0518 (6)0.0560 (6)0.0820 (8)0.0025 (5)0.0206 (6)0.0081 (6)
O40.0598 (7)0.0671 (8)0.0982 (9)0.0010 (6)0.0296 (6)0.0054 (6)
O50.0574 (7)0.0748 (9)0.1098 (10)0.0136 (6)0.0223 (7)0.0293 (7)
O60.0536 (6)0.0648 (7)0.0789 (8)0.0073 (5)0.0184 (5)0.0110 (6)
N70.0505 (7)0.0444 (7)0.0720 (9)0.0020 (5)0.0150 (6)0.0087 (6)
C80.0518 (10)0.0929 (14)0.0848 (13)0.0122 (9)0.0191 (9)0.0062 (10)
C90.0506 (9)0.0549 (10)0.0594 (9)0.0030 (7)0.0082 (7)0.0061 (7)
C100.0459 (8)0.0465 (8)0.0527 (8)0.0009 (6)0.0060 (6)0.0028 (6)
C110.0523 (8)0.0436 (8)0.0720 (10)0.0045 (6)0.0119 (7)0.0063 (7)
C120.0474 (8)0.0506 (9)0.0677 (10)0.0064 (6)0.0129 (7)0.0040 (7)
C130.0432 (7)0.0459 (8)0.0504 (8)0.0012 (6)0.0038 (6)0.0007 (6)
C140.0480 (8)0.0402 (8)0.0522 (8)0.0009 (6)0.0038 (6)0.0015 (6)
C150.0456 (8)0.0475 (9)0.0591 (9)0.0016 (6)0.0122 (7)0.0011 (7)
C160.0574 (9)0.0429 (9)0.0633 (10)0.0069 (7)0.0070 (7)0.0035 (7)
C170.0507 (8)0.0481 (9)0.0619 (9)0.0091 (7)0.0088 (7)0.0007 (7)
C180.0432 (8)0.0526 (9)0.0499 (8)0.0042 (6)0.0016 (6)0.0008 (6)
C190.0473 (8)0.0540 (9)0.0627 (9)0.0038 (7)0.0109 (7)0.0067 (7)
C200.0457 (8)0.0563 (9)0.0529 (8)0.0042 (7)0.0058 (6)0.0023 (7)
C210.0552 (9)0.0511 (9)0.0746 (11)0.0092 (7)0.0153 (8)0.0063 (8)
C220.0600 (10)0.0493 (9)0.0753 (11)0.0024 (7)0.0126 (8)0.0024 (8)
C230.0493 (8)0.0577 (10)0.0576 (9)0.0024 (7)0.0077 (7)0.0005 (7)
C240.0536 (9)0.0550 (9)0.0612 (9)0.0106 (7)0.0093 (7)0.0059 (7)
C250.0557 (9)0.0488 (9)0.0615 (9)0.0045 (7)0.0076 (7)0.0037 (7)
C260.0662 (11)0.0834 (13)0.0892 (13)0.0052 (9)0.0309 (10)0.0102 (10)
Geometric parameters (Å, º) top
O1—C161.3636 (17)C13—C181.4435 (19)
O1—C141.3738 (16)C14—C151.3774 (19)
O2—C161.2124 (18)C15—H150.9300
O3—C201.3786 (18)C16—C171.434 (2)
O3—C191.4144 (17)C17—C181.345 (2)
O4—C231.3742 (18)C17—H170.9300
O4—C261.407 (2)C18—C191.496 (2)
O5—C91.2042 (19)C19—H19A0.9700
O6—C91.3397 (18)C19—H19B0.9700
O6—C81.4309 (19)C20—C211.376 (2)
N7—C91.3514 (19)C20—C251.380 (2)
N7—C101.3935 (18)C21—C221.378 (2)
N7—H70.8600C21—H210.9300
C8—H8A0.9600C22—C231.371 (2)
C8—H8B0.9600C22—H220.9300
C8—H8C0.9600C23—C241.384 (2)
C10—C151.377 (2)C24—C251.383 (2)
C10—C111.3993 (19)C24—H240.9300
C11—C121.368 (2)C25—H250.9300
C11—H110.9300C26—H26A0.9600
C12—C131.401 (2)C26—H26B0.9600
C12—H120.9300C26—H26C0.9600
C13—C141.3874 (19)
C16—O1—C14121.89 (11)C18—C17—C16121.85 (14)
C20—O3—C19116.39 (12)C18—C17—H17119.1
C23—O4—C26117.57 (13)C16—C17—H17119.1
C9—O6—C8115.81 (13)C17—C18—C13119.37 (13)
C9—N7—C10127.28 (13)C17—C18—C19122.58 (13)
C9—N7—H7116.4C13—C18—C19118.05 (13)
C10—N7—H7116.4O3—C19—C18109.56 (12)
O6—C8—H8A109.5O3—C19—H19A109.8
O6—C8—H8B109.5C18—C19—H19A109.8
H8A—C8—H8B109.5O3—C19—H19B109.8
O6—C8—H8C109.5C18—C19—H19B109.8
H8A—C8—H8C109.5H19A—C19—H19B108.2
H8B—C8—H8C109.5C21—C20—O3124.84 (13)
O5—C9—O6124.20 (14)C21—C20—C25119.12 (14)
O5—C9—N7126.60 (14)O3—C20—C25116.05 (14)
O6—C9—N7109.20 (13)C20—C21—C22120.22 (15)
C15—C10—N7123.09 (13)C20—C21—H21119.9
C15—C10—C11119.03 (13)C22—C21—H21119.9
N7—C10—C11117.86 (13)C23—C22—C21120.96 (15)
C12—C11—C10120.86 (14)C23—C22—H22119.5
C12—C11—H11119.6C21—C22—H22119.5
C10—C11—H11119.6C22—C23—O4115.74 (14)
C11—C12—C13121.39 (14)C22—C23—C24119.20 (14)
C11—C12—H12119.3O4—C23—C24125.05 (14)
C13—C12—H12119.3C25—C24—C23119.85 (14)
C14—C13—C12116.04 (13)C25—C24—H24120.1
C14—C13—C18118.16 (13)C23—C24—H24120.1
C12—C13—C18125.80 (13)C20—C25—C24120.66 (15)
O1—C14—C15115.25 (12)C20—C25—H25119.7
O1—C14—C13121.04 (12)C24—C25—H25119.7
C15—C14—C13123.71 (13)O4—C26—H26A109.5
C10—C15—C14118.97 (13)O4—C26—H26B109.5
C10—C15—H15120.5H26A—C26—H26B109.5
C14—C15—H15120.5O4—C26—H26C109.5
O2—C16—O1115.68 (14)H26A—C26—H26C109.5
O2—C16—C17126.62 (14)H26B—C26—H26C109.5
O1—C16—C17117.70 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O2i0.861.992.8428 (16)170
C15—H15···O50.932.302.8764 (19)120
C19—H19A···O5ii0.972.533.476 (2)165
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H17NO6
Mr355.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3141 (1), 17.3978 (3), 11.5729 (2)
β (°) 94.309 (1)
V3)1669.25 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14973, 2939, 2374
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.06
No. of reflections2939
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O2i0.861.992.8428 (16)170
C15—H15···O50.932.302.8764 (19)120
C19—H19A···O5ii0.972.533.476 (2)165
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKulkarni, M. V. & Patil, V. D. (1981). Arch. Pharm. 314, 708–710.  CrossRef CAS Web of Science Google Scholar
First citationMahabaleshwaraiah, N. M., Kumar, K. M., Kotresh, O., Al-eryani, W. F. A. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o1566.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds