organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1640-o1641
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

N′-[Bis(benzyl­sulfan­yl)methyl­­idene]benzohydrazide

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 April 2012; accepted 1 May 2012; online 5 May 2012)

In the title hydrazonodithio­ate, C21H19N3OS2, the amide group is twisted out of the plane through the S2C=N atoms: the C—N—N—C torsion angle is 139.71 (13)°. The pyridine ring forms dihedral angles of 52.96 (8) and 86.46 (8)° with the phenyl rings, and the latter are approximately orthogonal [dihedral angle = 76.42 (9)°]. Supra­molecular chains sustained by N—H⋯O hydrogen bonds and propagated by glide symmetry along the c axis are found in the crystal structure. The chains are consolidated into a three-dimensional architecture by C—H⋯O and C—H⋯N inter­actions.

Related literature

For background to the coordination chemistry of dithio­carbazate derivatives, see: Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]); Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkin, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For related syntheses, see: Ali & Tarafder (1977[Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785-1791.]); Ali et al. (2001[Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2001). Inorg. Chim. Acta, 320, 1-6.]); Manan et al. (2012[Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173-179.]). For related structures, see: Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899.]); Singh et al. (2007[Singh, N. K., Singh, M. & Butcher, R. J. (2007). Acta Cryst. E63, o4405.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3OS2

  • Mr = 393.51

  • Monoclinic, P 21 /c

  • a = 11.2593 (4) Å

  • b = 21.2182 (7) Å

  • c = 8.6041 (3) Å

  • β = 103.678 (3)°

  • V = 1997.24 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.54 mm−1

  • T = 150 K

  • 0.50 × 0.36 × 0.16 mm

Data collection
  • Agilent Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.42, Tmax = 0.67

  • 38338 measured reflections

  • 3867 independent reflections

  • 3715 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.03

  • 3867 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.864 (17) 1.936 (17) 2.7852 (15) 167.4 (16)
C7—H7⋯N3ii 0.95 2.54 3.339 (2) 142
C8—H8⋯N3iii 0.95 2.52 3.424 (2) 158
C18—H18⋯O1i 0.95 2.53 3.365 (2) 147
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our interest in investigating the coordination properties of ligands containing the H—N—CS moiety (Tarafder et al., 2002; Ravoof et al., 2010) and our desire to expand the study of this class of biologically important compounds has lead us to synthesize a series of related ligands (Ali et al., 2001; Manan et al., 2012). The title compound N'-bis(benzylsulfanyl)methylidene]benzohydrazide, (I), was obtained from an attempt to prepare S-benzyl isonicotinoylcarbonohydrazonodithioate (see Experimental).

In (I), Fig. 1, the amide is twisted out of the plane through the S2CN atoms with the C1—N1—N2—C16 torsion angle being 139.71 (13)°. A similar twist was found in the structure of (PhCH2S)2C NN(H)C( O)C6H4OMe-4 (Jasinski et al., 2010) but a planar arrangement was observed in the structure of (PhCH2S)2CNN(H)C(O)C6H4OMe-2 (Singh et al., 2007). The dihedral angle between the phenyl rings is 76.42 (9)°, indicating an almost orthogonal relationship. Each of these rings forms a dihedral angle of 52.96 (8) and 86.46 (8)° with the pyridyl ring.

The crystal packing features supramolecular chains sustained by N—H···O hydrogen bonds, Table 1, and propagated by glide symmetry along the c axis, Fig. 2. Chains are consolidated into a three-dimensional architecture by C—H···O and C—H···N interactions, Fig. 3 and Table 1.

Related literature top

For background to the coordination chemistry of dithiocarbazate derivatives, see: Tarafder et al. (2002); Ravoof et al. (2010). For related syntheses, see: Ali & Tarafder (1977); Ali et al. (2001); Manan et al. (2012). For related structures, see: Jasinski et al. (2010); Singh et al. (2007).

Experimental top

The procedure to synthesize S-benzyldithiocarbazate (Ali & Tarafder, 1977) was adapted to prepare S-benzyl isonicotinoylcarbonohydrazono dithioate by replacing hydrazine with its isonicotinic acid derivative. Potassium hydroxide (0.2 mol, 11.2 g) in absolute ethanol (70 ml) was added to a suspension of isonicotinic acid hydrazide (0.2 mol, 27.43 g) in absolute ethanol (700 ml). The pale-yellow solution was kept in an ice-salt bath and carbon disulfide (0.2 mol) was added drop-wise with constant stirring over one hour. Benzylchloride (0.2 mol, 23 ml) was then added drop-wise with vigorous stirring to the pale-orange solution obtained above. The reaction temperature was maintained below 278 K. An unidentified pale-yellow solid (33.84 g) which did not contain any benzyl substituent was filtered from the mixture. The filtrate was kept in a freezer for one week before it was used as replacement for absolute ethanol to repeat the above reaction. The final solution produced dark-yellow blocks of the title compound after storage at 268 K for 5 months. (Yield 16 g; M.pt: 369 K).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Uequiv(C). The amino H-atom was refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N—H···O hydrogen bonding, shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The N—H···O, C—H···O and C—H···N interactions are shown as blue orange and brown dashed lines, respectively.
N'-[Bis(benzylsulfanyl)methylidene]benzohydrazide top
Crystal data top
C21H19N3OS2F(000) = 824
Mr = 393.51Dx = 1.309 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 17900 reflections
a = 11.2593 (4) Åθ = 4–71°
b = 21.2182 (7) ŵ = 2.54 mm1
c = 8.6041 (3) ÅT = 150 K
β = 103.678 (3)°Block, dark yellow
V = 1997.24 (12) Å30.50 × 0.36 × 0.16 mm
Z = 4
Data collection top
Agilent Xcaliber Eos Gemini
diffractometer
3867 independent reflections
Radiation source: fine-focus sealed tube3715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1952 pixels mm-1θmax = 71.4°, θmin = 4.0°
ω/2θ scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2426
Tmin = 0.42, Tmax = 0.67l = 1010
38338 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.6548P]
where P = (Fo2 + 2Fc2)/3
3867 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C21H19N3OS2V = 1997.24 (12) Å3
Mr = 393.51Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2593 (4) ŵ = 2.54 mm1
b = 21.2182 (7) ÅT = 150 K
c = 8.6041 (3) Å0.50 × 0.36 × 0.16 mm
β = 103.678 (3)°
Data collection top
Agilent Xcaliber Eos Gemini
diffractometer
3867 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3715 reflections with I > 2σ(I)
Tmin = 0.42, Tmax = 0.67Rint = 0.031
38338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
3867 reflectionsΔρmin = 0.32 e Å3
247 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58342 (3)0.395419 (15)0.24637 (4)0.02644 (11)
S20.37808 (3)0.403747 (16)0.41378 (4)0.03091 (12)
O10.55367 (12)0.19229 (5)0.45894 (12)0.0423 (3)
N10.45622 (11)0.29676 (5)0.32219 (13)0.0266 (2)
N20.53822 (10)0.26152 (5)0.25652 (13)0.0246 (2)
H2N0.5455 (15)0.2700 (8)0.161 (2)0.030*
N30.82288 (13)0.08675 (8)0.1580 (2)0.0510 (4)
C10.47186 (11)0.35652 (7)0.32465 (14)0.0240 (3)
C20.58359 (14)0.47567 (7)0.32153 (18)0.0316 (3)
H2A0.50160.49480.28450.038*
H2B0.60560.47580.43990.038*
C30.67684 (13)0.51237 (7)0.25762 (17)0.0288 (3)
C40.64021 (15)0.55501 (9)0.1339 (2)0.0423 (4)
H40.55560.56050.08670.051*
C50.72615 (19)0.58997 (10)0.0779 (2)0.0525 (5)
H50.70010.61930.00680.063*
C60.84883 (17)0.58206 (9)0.1453 (2)0.0465 (4)
H60.90760.60570.10690.056*
C70.88623 (15)0.53955 (8)0.2688 (2)0.0421 (4)
H70.97090.53410.31550.051*
C80.80055 (14)0.50489 (7)0.32481 (19)0.0351 (3)
H80.82690.47580.40990.042*
C90.27606 (13)0.34592 (7)0.47123 (17)0.0297 (3)
H9A0.32190.30630.50340.036*
H9B0.24870.36200.56510.036*
C100.16574 (13)0.33186 (7)0.33872 (17)0.0308 (3)
C110.15710 (15)0.27626 (9)0.2525 (2)0.0469 (4)
H110.22160.24630.27660.056*
C120.05412 (18)0.26418 (11)0.1306 (3)0.0620 (6)
H120.04890.22610.07120.074*
C130.04034 (18)0.30698 (12)0.0955 (2)0.0582 (5)
H130.11020.29860.01160.070*
C140.03337 (18)0.36186 (10)0.1820 (2)0.0555 (5)
H140.09890.39120.15910.067*
C150.06947 (16)0.37429 (8)0.3028 (2)0.0441 (4)
H150.07410.41240.36180.053*
C160.57822 (13)0.20778 (6)0.33232 (15)0.0262 (3)
C170.66171 (12)0.16710 (7)0.26297 (16)0.0277 (3)
C180.72075 (14)0.18668 (8)0.14762 (18)0.0352 (3)
H180.70770.22770.10260.042*
C190.79978 (15)0.14459 (10)0.0994 (2)0.0475 (4)
H190.83970.15810.01950.057*
C200.76652 (16)0.06886 (9)0.2706 (2)0.0489 (4)
H200.78240.02780.31440.059*
C210.68633 (15)0.10680 (7)0.3272 (2)0.0381 (4)
H210.64870.09210.40820.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02696 (19)0.02388 (19)0.03094 (19)0.00467 (12)0.01177 (14)0.00630 (12)
S20.0295 (2)0.02387 (19)0.0439 (2)0.00234 (12)0.01763 (16)0.00832 (13)
O10.0760 (9)0.0293 (6)0.0282 (5)0.0116 (5)0.0256 (5)0.0044 (4)
N10.0300 (6)0.0239 (6)0.0292 (6)0.0011 (4)0.0134 (5)0.0024 (4)
N20.0309 (6)0.0230 (6)0.0232 (5)0.0012 (4)0.0129 (4)0.0005 (4)
N30.0308 (7)0.0560 (10)0.0626 (10)0.0119 (7)0.0037 (7)0.0243 (8)
C10.0233 (6)0.0253 (7)0.0238 (6)0.0008 (5)0.0067 (5)0.0035 (5)
C20.0332 (7)0.0232 (7)0.0420 (8)0.0061 (5)0.0159 (6)0.0090 (6)
C30.0312 (7)0.0242 (7)0.0328 (7)0.0057 (5)0.0115 (6)0.0065 (5)
C40.0343 (8)0.0482 (10)0.0408 (8)0.0068 (7)0.0017 (6)0.0066 (7)
C50.0559 (11)0.0585 (12)0.0407 (9)0.0109 (9)0.0067 (8)0.0181 (8)
C60.0450 (9)0.0502 (10)0.0493 (9)0.0164 (8)0.0213 (8)0.0037 (8)
C70.0292 (8)0.0413 (9)0.0567 (10)0.0062 (7)0.0123 (7)0.0017 (7)
C80.0325 (8)0.0301 (8)0.0432 (8)0.0020 (6)0.0096 (6)0.0034 (6)
C90.0297 (7)0.0292 (7)0.0340 (7)0.0023 (5)0.0153 (6)0.0026 (6)
C100.0312 (7)0.0316 (7)0.0339 (7)0.0053 (6)0.0166 (6)0.0028 (6)
C110.0328 (8)0.0466 (10)0.0657 (11)0.0076 (7)0.0207 (8)0.0230 (9)
C120.0445 (10)0.0750 (14)0.0714 (13)0.0194 (10)0.0237 (9)0.0421 (11)
C130.0388 (10)0.0868 (15)0.0471 (10)0.0165 (10)0.0069 (8)0.0133 (10)
C140.0430 (10)0.0600 (12)0.0576 (11)0.0036 (9)0.0004 (8)0.0024 (9)
C150.0433 (9)0.0379 (9)0.0487 (9)0.0024 (7)0.0058 (7)0.0035 (7)
C160.0341 (7)0.0230 (7)0.0217 (6)0.0012 (5)0.0071 (5)0.0037 (5)
C170.0261 (7)0.0296 (7)0.0246 (6)0.0005 (5)0.0006 (5)0.0084 (5)
C180.0296 (7)0.0448 (9)0.0314 (7)0.0052 (6)0.0073 (6)0.0037 (6)
C190.0301 (8)0.0687 (12)0.0451 (9)0.0065 (8)0.0116 (7)0.0148 (9)
C200.0382 (9)0.0370 (9)0.0662 (11)0.0098 (7)0.0018 (8)0.0138 (8)
C210.0374 (8)0.0283 (8)0.0465 (9)0.0024 (6)0.0059 (7)0.0062 (6)
Geometric parameters (Å, º) top
S1—C11.7643 (13)C8—H80.9500
S1—C21.8213 (14)C9—C101.504 (2)
S2—C11.7579 (13)C9—H9A0.9900
S2—C91.8270 (14)C9—H9B0.9900
O1—C161.2304 (17)C10—C111.385 (2)
N1—C11.2795 (18)C10—C151.387 (2)
N1—N21.4063 (15)C11—C121.391 (3)
N2—C161.3376 (18)C11—H110.9500
N2—H2N0.867 (18)C12—C131.377 (3)
N3—C201.333 (3)C12—H120.9500
N3—C191.329 (3)C13—C141.374 (3)
C2—C31.5113 (19)C13—H130.9500
C2—H2A0.9900C14—C151.386 (3)
C2—H2B0.9900C14—H140.9500
C3—C81.385 (2)C15—H150.9500
C3—C41.384 (2)C16—C171.5001 (18)
C4—C51.392 (2)C17—C181.383 (2)
C4—H40.9500C17—C211.395 (2)
C5—C61.376 (3)C18—C191.391 (2)
C5—H50.9500C18—H180.9500
C6—C71.382 (3)C19—H190.9500
C6—H60.9500C20—C211.381 (2)
C7—C81.387 (2)C20—H200.9500
C7—H70.9500C21—H210.9500
C1—S1—C2104.06 (6)S2—C9—H9B109.0
C1—S2—C9102.48 (7)H9A—C9—H9B107.8
C1—N1—N2115.64 (11)C11—C10—C15118.79 (15)
C16—N2—N1115.76 (11)C11—C10—C9121.06 (14)
C16—N2—H2N123.0 (12)C15—C10—C9120.14 (14)
N1—N2—H2N119.4 (11)C10—C11—C12120.09 (18)
C20—N3—C19117.05 (15)C10—C11—H11120.0
N1—C1—S2118.53 (10)C12—C11—H11120.0
N1—C1—S1124.39 (10)C13—C12—C11120.47 (18)
S2—C1—S1117.07 (8)C13—C12—H12119.8
C3—C2—S1107.16 (9)C11—C12—H12119.8
C3—C2—H2A110.3C12—C13—C14119.84 (18)
S1—C2—H2A110.3C12—C13—H13120.1
C3—C2—H2B110.3C14—C13—H13120.1
S1—C2—H2B110.3C13—C14—C15119.87 (19)
H2A—C2—H2B108.5C13—C14—H14120.1
C8—C3—C4118.91 (14)C15—C14—H14120.1
C8—C3—C2120.38 (13)C14—C15—C10120.92 (17)
C4—C3—C2120.69 (13)C14—C15—H15119.5
C3—C4—C5120.62 (16)C10—C15—H15119.5
C3—C4—H4119.7O1—C16—N2122.64 (13)
C5—C4—H4119.7O1—C16—C17119.44 (12)
C6—C5—C4119.99 (16)N2—C16—C17117.84 (12)
C6—C5—H5120.0C18—C17—C21118.39 (14)
C4—C5—H5120.0C18—C17—C16124.44 (13)
C5—C6—C7119.77 (15)C21—C17—C16117.05 (13)
C5—C6—H6120.1C17—C18—C19118.11 (16)
C7—C6—H6120.1C17—C18—H18120.9
C6—C7—C8120.20 (16)C19—C18—H18120.9
C6—C7—H7119.9N3—C19—C18124.13 (17)
C8—C7—H7119.9N3—C19—H19117.9
C3—C8—C7120.51 (15)C18—C19—H19117.9
C3—C8—H8119.7N3—C20—C21123.60 (18)
C7—C8—H8119.7N3—C20—H20118.2
C10—C9—S2112.79 (10)C21—C20—H20118.2
C10—C9—H9A109.0C20—C21—C17118.70 (17)
S2—C9—H9A109.0C20—C21—H21120.7
C10—C9—H9B109.0C17—C21—H21120.6
C1—N1—N2—C16139.71 (13)C9—C10—C11—C12179.87 (16)
N2—N1—C1—S2176.89 (9)C10—C11—C12—C130.5 (3)
N2—N1—C1—S12.25 (17)C11—C12—C13—C140.5 (3)
C9—S2—C1—N12.38 (12)C12—C13—C14—C150.9 (3)
C9—S2—C1—S1178.42 (7)C13—C14—C15—C100.4 (3)
C2—S1—C1—N1168.24 (12)C11—C10—C15—C140.6 (3)
C2—S1—C1—S210.91 (9)C9—C10—C15—C14179.43 (16)
C1—S1—C2—C3179.46 (10)N1—N2—C16—O15.9 (2)
S1—C2—C3—C876.56 (15)N1—N2—C16—C17177.46 (11)
S1—C2—C3—C4105.00 (15)O1—C16—C17—C18162.44 (15)
C8—C3—C4—C50.1 (3)N2—C16—C17—C1814.3 (2)
C2—C3—C4—C5178.34 (16)O1—C16—C17—C2113.6 (2)
C3—C4—C5—C60.3 (3)N2—C16—C17—C21169.68 (13)
C4—C5—C6—C70.3 (3)C21—C17—C18—C191.3 (2)
C5—C6—C7—C80.1 (3)C16—C17—C18—C19177.25 (13)
C4—C3—C8—C70.1 (2)C20—N3—C19—C180.4 (3)
C2—C3—C8—C7178.54 (14)C17—C18—C19—N30.5 (2)
C6—C7—C8—C30.1 (3)C19—N3—C20—C210.4 (3)
C1—S2—C9—C1086.57 (11)N3—C20—C21—C170.4 (3)
S2—C9—C10—C11104.40 (15)C18—C17—C21—C201.3 (2)
S2—C9—C10—C1576.77 (16)C16—C17—C21—C20177.54 (14)
C15—C10—C11—C121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.864 (17)1.936 (17)2.7852 (15)167.4 (16)
C7—H7···N3ii0.952.543.339 (2)142
C8—H8···N3iii0.952.523.424 (2)158
C18—H18···O1i0.952.533.365 (2)147
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H19N3OS2
Mr393.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.2593 (4), 21.2182 (7), 8.6041 (3)
β (°) 103.678 (3)
V3)1997.24 (12)
Z4
Radiation typeCu Kα
µ (mm1)2.54
Crystal size (mm)0.50 × 0.36 × 0.16
Data collection
DiffractometerAgilent Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.42, 0.67
No. of measured, independent and
observed [I > 2σ(I)] reflections
38338, 3867, 3715
Rint0.031
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections3867
No. of parameters247
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.32

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.864 (17)1.936 (17)2.7852 (15)167.4 (16)
C7—H7···N3ii0.952.543.339 (2)142
C8—H8···N3iii0.952.523.424 (2)158
C18—H18···O1i0.952.533.365 (2)147
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 9174000), the Malaysian Ministry of Science, Technology and Innovation (grant No. 09-02-04-0752-EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01-13-11-986FR). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAli, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2001). Inorg. Chim. Acta, 320, 1–6.  Google Scholar
First citationAli, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1791.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). Acta Cryst. E66, o1899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., How, F. N.-F. & Watkin, D. J. (2012). J. Chem. Crystallogr. 42, 173–179.  Web of Science CSD CrossRef Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkin, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. K., Singh, M. & Butcher, R. J. (2007). Acta Cryst. E63, o4405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1640-o1641
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds