organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1633-o1634

[2,6-Bis(bi­phenyl-4-yl)-4-hy­dr­oxy-4-(pyridin-2-yl)cyclo­hexane-1,3-di­yl]bis­­[(pyridin-2-yl)methanone]–butan-2-one (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 April 2012; accepted 29 April 2012; online 5 May 2012)

In the title solvate, C47H37N3O3·C4H8O, the cyclo­hexane ring adopts a chair conformation and the plane through its near coplanar atoms forms dihedral angles of 82.58 (7), 89.27 (7), 60.30 (8), 54.54 (7) and 72.03 (7)°, respectively, with the three pyridine rings and the two attached benzene rings. The rings of the biphenyl units are twisted from each other, making dihedral angles of 35.27 (7) and 45.41 (7)°. All the rings are in equatorial orientations in the cyclo­hexane ring, except for the C=O-bonded pyridine ring in position 1, which is axial. Intra­molecular O—H⋯N and C—H⋯O hydrogen bonds form one S(5) and three S(6) ring motifs. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds into a chain along the c axis. The crystal structure also features weak C—H⋯π inter­actions and aromatic ππ stacking [centroid–centroid distances = 3.5856 (10) and 3.7090 (9) Å].

Related literature

For a related structure, see: Schormann & Egert (1996[Schormann, N. & Egert, E. (1996). Acta Cryst. C52, 2254-2256.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C47H37N3O3·C4H8O

  • Mr = 763.90

  • Monoclinic, P 21 /c

  • a = 13.7269 (9) Å

  • b = 25.3723 (16) Å

  • c = 11.4574 (7) Å

  • β = 100.643 (1)°

  • V = 3921.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.38 × 0.22 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.987

  • 41041 measured reflections

  • 10584 independent reflections

  • 7594 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.143

  • S = 0.99

  • 10584 reflections

  • 529 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C20–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.90 (2) 1.92 (2) 2.5615 (18) 127.0 (19)
C16—H16A⋯O3 0.97 2.46 3.0730 (19) 121
C18—H18A⋯O3 0.98 2.39 3.0603 (19) 125
C26—H26A⋯O1i 0.93 2.53 3.3079 (19) 142
C27—H27A⋯O4ii 0.93 2.56 3.464 (2) 163
C3—H3ACg2iii 0.93 2.96 3.7821 (17) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of fully cyclo-substituted cyclohexane, 1r,9t,16t-trioxahexaspiro[2.0.3.0.2.0.3.0.2.0.3.0]heneicosane, has been reported (Schormann & Egert, 1996). As part of our studies in this area, the title compound (I) was prepared and its crystal structure is now reported.

The central cyclohexane (C13–C18) ring adopts a chair conformation (Cremer & Pople, 1975) with puckering parameters Q=0.5932 (16) Å, θ=4.69 (15)°, ϕ=274.6 (19)° and the plane through the coplanar atoms (C13/C15/C16/C18) form dihedral angles of 82.58 (7), 89.27 (7), 60.30 (8), 54.54 (7), and 72.03 (7)° repectively with three pyridines (N1/C25–C29, N2/C20–C24 and N3/C31–C35) rings and two attached phenyl (C7–C12 and C36–C41) rings. The phenyl rings of biphenyl (C1–C6/C7–C12 and C36–C41/C42–C47) are slightly twisted from each other with the dihedral angles of 35.27 (7) and 45.41 (7)°, respectively. Intramolecular O1—H1O1···N1, C16—H16A···O3 and C18—H18A···O3 hydrogen bonds (Table 1) form one S(5) and three S(6) ring motifs (Bernstein et al., 1995). The bond lengths are comparable to those in the related structure (Schormann & Egert, 1996).

In the crystal (Fig. 2), the molecules are linked via intermolecular C26—H26A···O1 and C27—H27A···O4 hydrogen bonds into a chain along the c axis. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the N2/C20–C24 ring (centroid Cg2). Weak ππ interactions were observed with Cg1···Cg2 = 3.5856 (10) Å [symmetry code: X, Y, Z] and Cg8···Cg8 = 3.7090 (9) Å [symmetry code: –X, –Y, –Z], where Cg1, Cg2 and Cg8 are the centroids of N1/C25–C29, N2/C20–C24 and C42–C47 rings, respectively.

Related literature top

For a related structure, see: Schormann & Egert (1996). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987). for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a mixture of 2-acetyl pyridine (0.363 g, 0.003 mole) and biphenyl-4-carboxaldehyde (0.42 g, 0.002 mole) in 30 ml ethanol, 10 ml of 10% potassium hydroxide solution was added and stirred at 15–20 °C for 4 h and kept at room temperature overnight. The precipitate formed was collected by filtration and purified by recrystallization from acetone. The proposed mechanism is shown in Fig. 3. Colourless blocks were grown from EMK by the slow evaporation method and the yield of the compound was 74%. (M.p.: 518 K).

Refinement top

Atom H1O1 was located from the difference map and refined freely [O—H = 0.90 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) (C—H = 0.9300–0.9800 Å). A rotating group model was applied to the methyl groups. In the final refinement, 4 outliers (0 10 0), (7 1 5), (-8 1 6) and (6 1 0) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
[Figure 3] Fig. 3. Proposed mechanism of formation of the title compound. R = C6H5.
[2,6-Bis(biphenyl-4-yl)-4-hydroxy-4-(pyridin-2-yl)cyclohexane-1,3- diyl]bis[(pyridin-2-yl)methanone]–butan-2-one (1/1) top
Crystal data top
C47H37N3O3·C4H8OF(000) = 1616
Mr = 763.90Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7618 reflections
a = 13.7269 (9) Åθ = 2.2–28.6°
b = 25.3723 (16) ŵ = 0.08 mm1
c = 11.4574 (7) ÅT = 100 K
β = 100.643 (1)°Block, colourless
V = 3921.8 (4) Å30.38 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
10584 independent reflections
Radiation source: fine-focus sealed tube7594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 29.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.969, Tmax = 0.987k = 3434
41041 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0773P)2 + 1.0792P]
where P = (Fo2 + 2Fc2)/3
10584 reflections(Δ/σ)max = 0.001
529 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C47H37N3O3·C4H8OV = 3921.8 (4) Å3
Mr = 763.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7269 (9) ŵ = 0.08 mm1
b = 25.3723 (16) ÅT = 100 K
c = 11.4574 (7) Å0.38 × 0.22 × 0.17 mm
β = 100.643 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
10584 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7594 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.987Rint = 0.050
41041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.44 e Å3
10584 reflectionsΔρmin = 0.30 e Å3
529 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47599 (8)0.28118 (4)0.07705 (9)0.0183 (2)
O20.40319 (8)0.39570 (5)0.08531 (10)0.0238 (3)
O30.25110 (8)0.26318 (4)0.19706 (9)0.0186 (2)
N10.62179 (9)0.32082 (5)0.06856 (12)0.0194 (3)
N20.41942 (9)0.40787 (5)0.22129 (12)0.0190 (3)
N30.03605 (9)0.22770 (5)0.00083 (12)0.0202 (3)
C10.11669 (11)0.44153 (7)0.03464 (14)0.0210 (3)
H1A0.07990.42960.10620.025*
C20.20671 (12)0.46671 (7)0.03377 (16)0.0247 (3)
H2A0.22930.47190.10460.030*
C30.26301 (11)0.48415 (6)0.07207 (16)0.0229 (3)
H3A0.32360.50070.07270.027*
C40.22829 (11)0.47679 (6)0.17722 (15)0.0215 (3)
H4A0.26580.48850.24850.026*
C50.13774 (11)0.45199 (6)0.17696 (14)0.0193 (3)
H5A0.11510.44750.24790.023*
C60.08069 (10)0.43384 (6)0.07068 (13)0.0164 (3)
C70.01449 (10)0.40547 (6)0.06783 (13)0.0154 (3)
C80.02761 (11)0.37150 (6)0.15985 (13)0.0172 (3)
H8A0.02230.36820.22640.021*
C90.11430 (11)0.34263 (6)0.15275 (13)0.0161 (3)
H9A0.12170.32030.21500.019*
C100.19083 (10)0.34639 (6)0.05390 (13)0.0136 (3)
C110.17924 (10)0.38177 (6)0.03568 (13)0.0155 (3)
H11A0.23010.38600.10090.019*
C120.09242 (11)0.41081 (6)0.02849 (13)0.0166 (3)
H12A0.08620.43420.08910.020*
C130.27781 (10)0.30855 (6)0.04452 (12)0.0136 (3)
H13A0.29590.30640.12320.016*
C140.24354 (10)0.25255 (6)0.01356 (12)0.0131 (3)
H14A0.19020.24160.07810.016*
C150.32949 (10)0.21228 (6)0.00748 (13)0.0138 (3)
H15A0.34570.21110.08720.017*
C160.42367 (10)0.23047 (6)0.07589 (13)0.0155 (3)
H16A0.41150.23180.15660.019*
H16B0.47630.20520.07360.019*
C170.45672 (10)0.28472 (6)0.04085 (13)0.0142 (3)
C180.37070 (10)0.32549 (6)0.04325 (13)0.0134 (3)
H18A0.35510.32600.12330.016*
C190.40692 (10)0.37974 (6)0.01556 (13)0.0163 (3)
C200.45398 (10)0.41334 (6)0.11962 (14)0.0166 (3)
C210.52927 (11)0.44845 (6)0.10656 (16)0.0222 (3)
H21A0.55020.45170.03420.027*
C220.57213 (12)0.47830 (7)0.20346 (17)0.0287 (4)
H22A0.62270.50200.19760.034*
C230.53843 (12)0.47235 (7)0.30941 (17)0.0278 (4)
H23A0.56720.49120.37650.033*
C240.46085 (12)0.43761 (7)0.31349 (15)0.0236 (3)
H24A0.43660.43490.38380.028*
C250.55011 (10)0.30321 (6)0.12396 (13)0.0156 (3)
C270.64309 (12)0.32676 (7)0.31461 (15)0.0246 (3)
H27A0.65070.32840.39690.030*
C260.55883 (11)0.30471 (6)0.24721 (14)0.0190 (3)
H26A0.50890.29110.28340.023*
C280.71596 (12)0.34637 (7)0.25710 (16)0.0268 (4)
H28A0.77250.36220.30000.032*
C290.70311 (11)0.34191 (7)0.13515 (16)0.0244 (3)
H29A0.75320.35410.09740.029*
C300.19993 (10)0.25650 (6)0.09887 (13)0.0141 (3)
C310.08895 (10)0.25547 (6)0.08853 (13)0.0159 (3)
C320.04766 (12)0.28204 (7)0.17401 (14)0.0228 (3)
H32A0.08740.30060.23480.027*
C330.05412 (12)0.28006 (8)0.16618 (16)0.0303 (4)
H33A0.08440.29820.22040.036*
C340.11000 (12)0.25067 (7)0.07614 (16)0.0288 (4)
H34A0.17840.24800.06960.035*
C350.06176 (12)0.22533 (7)0.00385 (16)0.0248 (3)
H35A0.09980.20540.06350.030*
C360.29503 (10)0.15738 (6)0.01718 (13)0.0145 (3)
C370.29334 (11)0.13891 (6)0.13140 (13)0.0171 (3)
H37A0.31980.15960.19660.020*
C380.25277 (11)0.09003 (6)0.14942 (13)0.0175 (3)
H38A0.25090.07900.22630.021*
C390.21496 (10)0.05740 (6)0.05408 (13)0.0159 (3)
C400.22118 (11)0.07492 (6)0.06035 (13)0.0178 (3)
H40A0.19910.05320.12520.021*
C410.25965 (11)0.12404 (6)0.07825 (13)0.0167 (3)
H41A0.26200.13500.15510.020*
C420.16365 (11)0.00691 (6)0.06980 (13)0.0171 (3)
C430.09407 (11)0.00461 (6)0.14501 (14)0.0198 (3)
H43A0.08580.03350.19220.024*
C440.03753 (11)0.04023 (7)0.14967 (14)0.0217 (3)
H44A0.00910.04090.19910.026*
C450.04944 (11)0.08409 (6)0.08162 (15)0.0215 (3)
H45A0.01010.11380.08390.026*
C460.12103 (12)0.08316 (6)0.00972 (14)0.0212 (3)
H46A0.13100.11270.03470.025*
C470.17744 (11)0.03803 (6)0.00448 (13)0.0183 (3)
H47A0.22520.03780.04340.022*
O40.27860 (12)0.65693 (7)0.38250 (13)0.0479 (4)
C490.39719 (14)0.63104 (8)0.26608 (18)0.0345 (4)
H49A0.44380.65750.24970.041*
H49B0.38150.60860.19670.041*
C500.30448 (14)0.65787 (8)0.28538 (17)0.0319 (4)
C510.24465 (16)0.68586 (9)0.18082 (18)0.0387 (5)
H51A0.19560.70750.20710.058*
H51B0.21250.66040.12460.058*
H51C0.28760.70750.14390.058*
C480.44650 (15)0.59802 (8)0.3706 (2)0.0419 (5)
H48A0.50910.58530.35620.063*
H48B0.40470.56860.38050.063*
H48C0.45690.61920.44130.063*
H1O10.5333 (17)0.2988 (9)0.074 (2)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (5)0.0259 (6)0.0128 (5)0.0020 (4)0.0055 (4)0.0020 (4)
O20.0266 (6)0.0269 (6)0.0167 (6)0.0052 (5)0.0010 (5)0.0061 (5)
O30.0196 (5)0.0237 (6)0.0123 (5)0.0008 (4)0.0020 (4)0.0003 (4)
N10.0142 (6)0.0228 (7)0.0216 (7)0.0008 (5)0.0042 (5)0.0014 (5)
N20.0181 (6)0.0206 (7)0.0178 (6)0.0002 (5)0.0017 (5)0.0016 (5)
N30.0175 (6)0.0206 (7)0.0222 (7)0.0021 (5)0.0032 (5)0.0012 (5)
C10.0194 (7)0.0256 (8)0.0181 (8)0.0013 (6)0.0038 (6)0.0006 (6)
C20.0231 (8)0.0275 (9)0.0257 (9)0.0016 (6)0.0105 (7)0.0008 (7)
C30.0147 (7)0.0200 (8)0.0344 (9)0.0021 (6)0.0060 (6)0.0018 (7)
C40.0169 (7)0.0206 (8)0.0257 (8)0.0005 (6)0.0003 (6)0.0051 (6)
C50.0180 (7)0.0208 (8)0.0191 (8)0.0010 (6)0.0032 (6)0.0012 (6)
C60.0152 (6)0.0162 (7)0.0173 (7)0.0012 (5)0.0022 (6)0.0006 (6)
C70.0147 (6)0.0169 (7)0.0147 (7)0.0002 (5)0.0032 (5)0.0025 (6)
C80.0164 (7)0.0216 (8)0.0123 (7)0.0006 (5)0.0008 (5)0.0005 (6)
C90.0175 (7)0.0199 (7)0.0107 (7)0.0009 (5)0.0019 (5)0.0021 (6)
C100.0131 (6)0.0147 (7)0.0129 (7)0.0009 (5)0.0019 (5)0.0024 (5)
C110.0144 (6)0.0186 (7)0.0123 (7)0.0007 (5)0.0006 (5)0.0001 (5)
C120.0179 (7)0.0175 (7)0.0143 (7)0.0001 (5)0.0023 (6)0.0013 (6)
C130.0134 (6)0.0167 (7)0.0104 (6)0.0002 (5)0.0014 (5)0.0008 (5)
C140.0134 (6)0.0154 (7)0.0100 (6)0.0005 (5)0.0014 (5)0.0011 (5)
C150.0153 (6)0.0152 (7)0.0115 (6)0.0000 (5)0.0037 (5)0.0016 (5)
C160.0141 (6)0.0169 (7)0.0152 (7)0.0014 (5)0.0021 (5)0.0002 (6)
C170.0134 (6)0.0181 (7)0.0114 (7)0.0011 (5)0.0033 (5)0.0007 (5)
C180.0127 (6)0.0165 (7)0.0109 (6)0.0004 (5)0.0017 (5)0.0002 (5)
C190.0127 (6)0.0186 (7)0.0174 (7)0.0009 (5)0.0023 (5)0.0026 (6)
C200.0139 (6)0.0156 (7)0.0197 (8)0.0025 (5)0.0013 (6)0.0013 (6)
C210.0202 (7)0.0184 (8)0.0285 (9)0.0009 (6)0.0061 (7)0.0004 (6)
C220.0219 (8)0.0226 (9)0.0420 (11)0.0063 (6)0.0067 (8)0.0074 (8)
C230.0239 (8)0.0252 (9)0.0322 (10)0.0005 (6)0.0007 (7)0.0123 (7)
C240.0234 (8)0.0249 (8)0.0220 (8)0.0014 (6)0.0024 (6)0.0053 (7)
C250.0128 (6)0.0155 (7)0.0179 (7)0.0026 (5)0.0013 (5)0.0007 (6)
C270.0214 (8)0.0306 (9)0.0188 (8)0.0040 (6)0.0042 (6)0.0030 (7)
C260.0169 (7)0.0229 (8)0.0164 (7)0.0025 (6)0.0010 (6)0.0006 (6)
C280.0159 (7)0.0279 (9)0.0335 (10)0.0003 (6)0.0036 (7)0.0061 (7)
C290.0154 (7)0.0254 (9)0.0324 (9)0.0020 (6)0.0046 (7)0.0014 (7)
C300.0160 (6)0.0135 (7)0.0128 (7)0.0010 (5)0.0024 (5)0.0018 (5)
C310.0164 (7)0.0184 (7)0.0133 (7)0.0008 (5)0.0034 (5)0.0045 (6)
C320.0210 (7)0.0320 (9)0.0160 (8)0.0043 (6)0.0046 (6)0.0004 (6)
C330.0224 (8)0.0481 (12)0.0221 (9)0.0086 (7)0.0089 (7)0.0017 (8)
C340.0159 (7)0.0407 (11)0.0310 (10)0.0006 (7)0.0078 (7)0.0090 (8)
C350.0196 (7)0.0261 (9)0.0280 (9)0.0039 (6)0.0028 (7)0.0025 (7)
C360.0124 (6)0.0168 (7)0.0143 (7)0.0014 (5)0.0026 (5)0.0011 (5)
C370.0206 (7)0.0183 (7)0.0115 (7)0.0004 (6)0.0011 (6)0.0032 (6)
C380.0207 (7)0.0200 (8)0.0117 (7)0.0018 (6)0.0028 (6)0.0008 (6)
C390.0151 (6)0.0171 (7)0.0160 (7)0.0018 (5)0.0039 (5)0.0011 (6)
C400.0204 (7)0.0207 (8)0.0122 (7)0.0023 (6)0.0030 (6)0.0037 (6)
C410.0196 (7)0.0208 (7)0.0099 (7)0.0005 (5)0.0037 (5)0.0001 (6)
C420.0176 (7)0.0190 (7)0.0135 (7)0.0007 (5)0.0000 (5)0.0027 (6)
C430.0212 (7)0.0218 (8)0.0160 (7)0.0015 (6)0.0025 (6)0.0013 (6)
C440.0189 (7)0.0282 (9)0.0180 (8)0.0002 (6)0.0031 (6)0.0062 (6)
C450.0204 (7)0.0199 (8)0.0220 (8)0.0030 (6)0.0021 (6)0.0069 (6)
C460.0251 (8)0.0177 (8)0.0189 (8)0.0008 (6)0.0010 (6)0.0011 (6)
C470.0204 (7)0.0201 (8)0.0141 (7)0.0003 (6)0.0023 (6)0.0003 (6)
O40.0504 (9)0.0694 (11)0.0265 (7)0.0151 (8)0.0144 (7)0.0056 (7)
C490.0361 (10)0.0337 (10)0.0349 (11)0.0113 (8)0.0095 (8)0.0092 (8)
C500.0365 (10)0.0340 (10)0.0259 (9)0.0069 (8)0.0077 (8)0.0023 (8)
C510.0412 (11)0.0467 (12)0.0274 (10)0.0031 (9)0.0041 (8)0.0067 (9)
C480.0339 (10)0.0286 (10)0.0622 (15)0.0001 (8)0.0059 (10)0.0028 (10)
Geometric parameters (Å, º) top
O1—C171.4264 (17)C23—C241.390 (2)
O1—H1O10.90 (2)C23—H23A0.9300
O2—C191.2167 (18)C24—H24A0.9300
O3—C301.2230 (17)C25—C261.395 (2)
N1—C291.342 (2)C27—C261.385 (2)
N1—C251.3421 (18)C27—C281.388 (2)
N2—C241.337 (2)C27—H27A0.9300
N2—C201.3437 (19)C26—H26A0.9300
N3—C351.338 (2)C28—C291.380 (2)
N3—C311.341 (2)C28—H28A0.9300
C1—C21.389 (2)C29—H29A0.9300
C1—C61.400 (2)C30—C311.5062 (19)
C1—H1A0.9300C31—C321.393 (2)
C2—C31.385 (2)C32—C331.384 (2)
C2—H2A0.9300C32—H32A0.9300
C3—C41.388 (2)C33—C341.384 (3)
C3—H3A0.9300C33—H33A0.9300
C4—C51.393 (2)C34—C351.384 (2)
C4—H4A0.9300C34—H34A0.9300
C5—C61.399 (2)C35—H35A0.9300
C5—H5A0.9300C36—C371.394 (2)
C6—C71.4868 (19)C36—C411.397 (2)
C7—C121.394 (2)C37—C381.390 (2)
C7—C81.399 (2)C37—H37A0.9300
C8—C91.387 (2)C38—C391.392 (2)
C8—H8A0.9300C38—H38A0.9300
C9—C101.398 (2)C39—C401.402 (2)
C9—H9A0.9300C39—C421.489 (2)
C10—C111.395 (2)C40—C411.383 (2)
C10—C131.5203 (19)C40—H40A0.9300
C11—C121.391 (2)C41—H41A0.9300
C11—H11A0.9300C42—C471.396 (2)
C12—H12A0.9300C42—C431.401 (2)
C13—C181.532 (2)C43—C441.384 (2)
C13—C141.5581 (19)C43—H43A0.9300
C13—H13A0.9800C44—C451.386 (2)
C14—C301.5207 (19)C44—H44A0.9300
C14—C151.5526 (19)C45—C461.394 (2)
C14—H14A0.9800C45—H45A0.9300
C15—C361.515 (2)C46—C471.390 (2)
C15—C161.530 (2)C46—H46A0.9300
C15—H15A0.9800C47—H47A0.9300
C16—C171.526 (2)O4—C501.229 (2)
C16—H16A0.9700C49—C501.495 (3)
C16—H16B0.9700C49—C481.515 (3)
C17—C251.523 (2)C49—H49A0.9700
C17—C181.5738 (19)C49—H49B0.9700
C18—C191.517 (2)C50—C511.500 (3)
C18—H18A0.9800C51—H51A0.9600
C19—C201.510 (2)C51—H51B0.9600
C20—C211.393 (2)C51—H51C0.9600
C21—C221.382 (2)C48—H48A0.9600
C21—H21A0.9300C48—H48B0.9600
C22—C231.385 (3)C48—H48C0.9600
C22—H22A0.9300
C17—O1—H1O1104.1 (14)N2—C24—H24A118.4
C29—N1—C25118.00 (14)C23—C24—H24A118.4
C24—N2—C20117.38 (13)N1—C25—C26122.42 (14)
C35—N3—C31116.27 (14)N1—C25—C17114.38 (13)
C2—C1—C6120.88 (15)C26—C25—C17123.10 (13)
C2—C1—H1A119.6C26—C27—C28118.76 (16)
C6—C1—H1A119.6C26—C27—H27A120.6
C3—C2—C1120.33 (15)C28—C27—H27A120.6
C3—C2—H2A119.8C27—C26—C25118.82 (14)
C1—C2—H2A119.8C27—C26—H26A120.6
C2—C3—C4119.45 (14)C25—C26—H26A120.6
C2—C3—H3A120.3C29—C28—C27118.86 (15)
C4—C3—H3A120.3C29—C28—H28A120.6
C3—C4—C5120.56 (15)C27—C28—H28A120.6
C3—C4—H4A119.7N1—C29—C28123.07 (15)
C5—C4—H4A119.7N1—C29—H29A118.5
C4—C5—C6120.44 (14)C28—C29—H29A118.5
C4—C5—H5A119.8O3—C30—C31118.39 (13)
C6—C5—H5A119.8O3—C30—C14122.63 (12)
C5—C6—C1118.34 (14)C31—C30—C14118.87 (12)
C5—C6—C7121.81 (13)N3—C31—C32123.92 (14)
C1—C6—C7119.83 (14)N3—C31—C30117.80 (13)
C12—C7—C8118.01 (13)C32—C31—C30118.25 (14)
C12—C7—C6120.86 (13)C33—C32—C31118.28 (16)
C8—C7—C6121.11 (13)C33—C32—H32A120.9
C9—C8—C7120.64 (14)C31—C32—H32A120.9
C9—C8—H8A119.7C32—C33—C34118.78 (16)
C7—C8—H8A119.7C32—C33—H33A120.6
C8—C9—C10121.30 (14)C34—C33—H33A120.6
C8—C9—H9A119.3C33—C34—C35118.46 (15)
C10—C9—H9A119.3C33—C34—H34A120.8
C11—C10—C9117.98 (13)C35—C34—H34A120.8
C11—C10—C13123.31 (13)N3—C35—C34124.23 (16)
C9—C10—C13118.49 (13)N3—C35—H35A117.9
C12—C11—C10120.69 (14)C34—C35—H35A117.9
C12—C11—H11A119.7C37—C36—C41117.88 (14)
C10—C11—H11A119.7C37—C36—C15122.96 (13)
C11—C12—C7121.28 (14)C41—C36—C15119.11 (13)
C11—C12—H12A119.4C38—C37—C36121.04 (14)
C7—C12—H12A119.4C38—C37—H37A119.5
C10—C13—C18114.64 (12)C36—C37—H37A119.5
C10—C13—C14109.00 (11)C37—C38—C39121.02 (14)
C18—C13—C14110.86 (11)C37—C38—H38A119.5
C10—C13—H13A107.3C39—C38—H38A119.5
C18—C13—H13A107.3C38—C39—C40117.84 (14)
C14—C13—H13A107.3C38—C39—C42122.19 (13)
C30—C14—C15114.84 (12)C40—C39—C42119.86 (13)
C30—C14—C13108.39 (11)C41—C40—C39121.01 (14)
C15—C14—C13110.57 (11)C41—C40—H40A119.5
C30—C14—H14A107.6C39—C40—H40A119.5
C15—C14—H14A107.6C40—C41—C36121.10 (14)
C13—C14—H14A107.6C40—C41—H41A119.5
C36—C15—C16114.71 (12)C36—C41—H41A119.5
C36—C15—C14110.65 (11)C47—C42—C43118.11 (14)
C16—C15—C14112.15 (12)C47—C42—C39121.60 (13)
C36—C15—H15A106.2C43—C42—C39120.12 (14)
C16—C15—H15A106.2C44—C43—C42120.60 (15)
C14—C15—H15A106.2C44—C43—H43A119.7
C17—C16—C15111.45 (12)C42—C43—H43A119.7
C17—C16—H16A109.3C43—C44—C45120.87 (14)
C15—C16—H16A109.3C43—C44—H44A119.6
C17—C16—H16B109.3C45—C44—H44A119.6
C15—C16—H16B109.3C44—C45—C46119.23 (14)
H16A—C16—H16B108.0C44—C45—H45A120.4
O1—C17—C25109.25 (11)C46—C45—H45A120.4
O1—C17—C16107.96 (12)C47—C46—C45119.90 (15)
C25—C17—C16111.72 (12)C47—C46—H46A120.1
O1—C17—C18109.20 (11)C45—C46—H46A120.1
C25—C17—C18109.53 (11)C46—C47—C42121.21 (14)
C16—C17—C18109.14 (11)C46—C47—H47A119.4
C19—C18—C13112.49 (12)C42—C47—H47A119.4
C19—C18—C17108.47 (11)C50—C49—C48113.78 (17)
C13—C18—C17109.89 (11)C50—C49—H49A108.8
C19—C18—H18A108.6C48—C49—H49A108.8
C13—C18—H18A108.6C50—C49—H49B108.8
C17—C18—H18A108.6C48—C49—H49B108.8
O2—C19—C20119.92 (14)H49A—C49—H49B107.7
O2—C19—C18122.87 (14)O4—C50—C49121.41 (19)
C20—C19—C18117.14 (12)O4—C50—C51121.67 (18)
N2—C20—C21123.16 (15)C49—C50—C51116.93 (16)
N2—C20—C19117.26 (13)C50—C51—H51A109.5
C21—C20—C19119.58 (14)C50—C51—H51B109.5
C22—C21—C20118.56 (15)H51A—C51—H51B109.5
C22—C21—H21A120.7C50—C51—H51C109.5
C20—C21—H21A120.7H51A—C51—H51C109.5
C21—C22—C23118.87 (15)H51B—C51—H51C109.5
C21—C22—H22A120.6C49—C48—H48A109.5
C23—C22—H22A120.6C49—C48—H48B109.5
C22—C23—C24118.73 (16)H48A—C48—H48B109.5
C22—C23—H23A120.6C49—C48—H48C109.5
C24—C23—H23A120.6H48A—C48—H48C109.5
N2—C24—C23123.24 (16)H48B—C48—H48C109.5
C6—C1—C2—C30.7 (2)C21—C22—C23—C241.7 (3)
C1—C2—C3—C40.7 (2)C20—N2—C24—C231.6 (2)
C2—C3—C4—C50.1 (2)C22—C23—C24—N22.8 (3)
C3—C4—C5—C60.4 (2)C29—N1—C25—C261.9 (2)
C4—C5—C6—C10.4 (2)C29—N1—C25—C17174.52 (13)
C4—C5—C6—C7177.71 (14)O1—C17—C25—N111.29 (17)
C2—C1—C6—C50.2 (2)C16—C17—C25—N1130.67 (13)
C2—C1—C6—C7178.30 (15)C18—C17—C25—N1108.28 (14)
C5—C6—C7—C12146.89 (15)O1—C17—C25—C26172.28 (13)
C1—C6—C7—C1235.1 (2)C16—C17—C25—C2652.89 (18)
C5—C6—C7—C835.0 (2)C18—C17—C25—C2668.15 (17)
C1—C6—C7—C8143.08 (15)C28—C27—C26—C250.2 (2)
C12—C7—C8—C92.4 (2)N1—C25—C26—C272.2 (2)
C6—C7—C8—C9175.83 (14)C17—C25—C26—C27173.98 (14)
C7—C8—C9—C100.2 (2)C26—C27—C28—C291.8 (2)
C8—C9—C10—C112.6 (2)C25—N1—C29—C280.2 (2)
C8—C9—C10—C13172.17 (13)C27—C28—C29—N12.1 (3)
C9—C10—C11—C122.4 (2)C15—C14—C30—O351.17 (19)
C13—C10—C11—C12172.06 (13)C13—C14—C30—O373.02 (17)
C10—C11—C12—C70.1 (2)C15—C14—C30—C31132.65 (13)
C8—C7—C12—C112.5 (2)C13—C14—C30—C31103.16 (14)
C6—C7—C12—C11175.67 (14)C35—N3—C31—C321.4 (2)
C11—C10—C13—C1823.20 (19)C35—N3—C31—C30176.63 (14)
C9—C10—C13—C18162.34 (12)O3—C30—C31—N3152.71 (14)
C11—C10—C13—C14101.71 (15)C14—C30—C31—N330.95 (19)
C9—C10—C13—C1472.76 (16)O3—C30—C31—C3225.5 (2)
C10—C13—C14—C3055.26 (15)C14—C30—C31—C32150.88 (14)
C18—C13—C14—C3071.82 (14)N3—C31—C32—C330.4 (3)
C10—C13—C14—C15178.04 (11)C30—C31—C32—C33178.48 (15)
C18—C13—C14—C1554.88 (15)C31—C32—C33—C341.8 (3)
C30—C14—C15—C3659.49 (16)C32—C33—C34—C351.3 (3)
C13—C14—C15—C36177.48 (11)C31—N3—C35—C342.0 (2)
C30—C14—C15—C1669.98 (15)C33—C34—C35—N30.7 (3)
C13—C14—C15—C1653.05 (15)C16—C15—C36—C3743.43 (18)
C36—C15—C16—C17176.73 (11)C14—C15—C36—C3784.67 (16)
C14—C15—C16—C1755.93 (15)C16—C15—C36—C41139.07 (13)
C15—C16—C17—O160.21 (14)C14—C15—C36—C4192.83 (15)
C15—C16—C17—C25179.66 (11)C41—C36—C37—C383.4 (2)
C15—C16—C17—C1858.38 (15)C15—C36—C37—C38174.09 (13)
C10—C13—C18—C1956.49 (15)C36—C37—C38—C391.7 (2)
C14—C13—C18—C19179.59 (11)C37—C38—C39—C401.4 (2)
C10—C13—C18—C17177.45 (11)C37—C38—C39—C42174.85 (13)
C14—C13—C18—C1758.63 (14)C38—C39—C40—C412.8 (2)
O1—C17—C18—C1965.58 (14)C42—C39—C40—C41173.55 (14)
C25—C17—C18—C1954.02 (15)C39—C40—C41—C361.1 (2)
C16—C17—C18—C19176.62 (12)C37—C36—C41—C402.1 (2)
O1—C17—C18—C1357.77 (14)C15—C36—C41—C40175.58 (13)
C25—C17—C18—C13177.36 (11)C38—C39—C42—C47140.90 (15)
C16—C17—C18—C1360.04 (15)C40—C39—C42—C4742.9 (2)
C13—C18—C19—O236.79 (19)C38—C39—C42—C4343.9 (2)
C17—C18—C19—O284.98 (17)C40—C39—C42—C43132.31 (15)
C13—C18—C19—C20146.37 (12)C47—C42—C43—C443.0 (2)
C17—C18—C19—C2091.86 (14)C39—C42—C43—C44172.36 (14)
C24—N2—C20—C210.5 (2)C42—C43—C44—C451.0 (2)
C24—N2—C20—C19179.92 (13)C43—C44—C45—C461.4 (2)
O2—C19—C20—N2150.38 (14)C44—C45—C46—C471.8 (2)
C18—C19—C20—N232.68 (18)C45—C46—C47—C420.3 (2)
O2—C19—C20—C2129.0 (2)C43—C42—C47—C462.7 (2)
C18—C19—C20—C21147.93 (14)C39—C42—C47—C46172.64 (14)
N2—C20—C21—C221.5 (2)C48—C49—C50—O47.2 (3)
C19—C20—C21—C22179.16 (14)C48—C49—C50—C51172.71 (17)
C20—C21—C22—C230.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C20–C24 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.90 (2)1.92 (2)2.5615 (18)127.0 (19)
C16—H16A···O30.972.463.0730 (19)121
C18—H18A···O30.982.393.0603 (19)125
C26—H26A···O1i0.932.533.3079 (19)142
C27—H27A···O4ii0.932.563.464 (2)163
C3—H3A···Cg2iii0.932.963.7821 (17)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC47H37N3O3·C4H8O
Mr763.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.7269 (9), 25.3723 (16), 11.4574 (7)
β (°) 100.643 (1)
V3)3921.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.22 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.969, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
41041, 10584, 7594
Rint0.050
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 0.99
No. of reflections10584
No. of parameters529
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C20–C24 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.90 (2)1.92 (2)2.5615 (18)127.0 (19)
C16—H16A···O30.972.463.0730 (19)121
C18—H18A···O30.982.393.0603 (19)125
C26—H26A···O1i0.932.533.3079 (19)142
C27—H27A···O4ii0.932.563.464 (2)163
C3—H3A···Cg2iii0.932.963.7821 (17)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSchormann, N. & Egert, E. (1996). Acta Cryst. C52, 2254–2256.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1633-o1634
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds