organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(4-Bromo­phen­yl)thia­zol-2-yl]-4-(piperidin-1-yl)butanamide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University, Cairo 12311, Egypt, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 April 2012; accepted 29 April 2012; online 12 May 2012)

In the title compound, C18H22BrN3OS, the piperidine ring adopts a chair conformation. The mean plane of the thia­zole ring forms dihedral angles of 23.97 (10) and 75.82 (10)° with the mean planes of its adjacent benzene and piperidine rings, respectively. An intra­molecular N—H⋯N hydrogen bond generates an S(7) ring motif in the mol­ecule. In the crystal, no significant inter­moelcular hydrogen bonds are observed, but a weak ππ inter­action with a centroid–centroid distance of 3.8855 (13) Å occurs.

Related literature

For the pharmacological activity of 2-amino­thia­zole derivatives, see: Lednicer & Mitscher (1977[Lednicer, D. & Mitscher, L. A. (1977). The Organic Chemistry of Drug Synthesis, Vol. 1. New York: Wiley Interscience.]); Vagdevi et al. (2006[Vagdevi, H. M., Vaidya, V. P., Latha, K. P. & Padmashali, B. (2006). Indian J. Pharm. Sci. 68, 719-725.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For further synthetic details, see: El-Subbagh et al. (1999[El-Subbagh, H. I., Abadi, A. H. & Lehmann, J. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 137-142.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22BrN3OS

  • Mr = 408.36

  • Triclinic, [P \overline 1]

  • a = 6.8276 (7) Å

  • b = 9.2782 (9) Å

  • c = 14.5907 (14) Å

  • α = 88.812 (2)°

  • β = 86.085 (3)°

  • γ = 75.394 (2)°

  • V = 892.33 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 100 K

  • 0.37 × 0.14 × 0.05 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.467, Tmax = 0.890

  • 17762 measured reflections

  • 5019 independent reflections

  • 4117 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.07

  • 5019 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.80 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N3 0.93 (3) 1.83 (3) 2.742 (2) 167 (3)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminothiazole derivatives possess a wide range of pharmacological activities. Some of them have been used as anti-infective or anti-trichomonal agents. Those, having an aromatic substituent at C-4 position, exhibit some central nervous system (CNS) activities (Lednicer & Mitscher, 1977) and have been found to be potent biological response modifiers with significant immunosuppressant activity (Vagdevi et al., 2006).

The asymmetric unit of the title compound is shown in Fig. 1. The piperidine ring (N3/C14–C18) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975), Q = 0.572 (2) Å, θ = 2.6 (2)° and ϕ = 354 (6)°. The atoms N3 and C16 are deviated from the mean plane of C14/C15/C17/C18 by -0.6758 (16) and 0.6567 (18) Å, respectively. The mean plane of central thiazole ring (S1/N1/C7–C9) forms dihedral angles of 23.97 (10) and 75.82 (10)° with the mean planes of adjacent benzene ring (C1–C6) and piperidine ring, respectively. An intramolecular N2—H1N2···N3 hydrogen bond generates an S(7) ring motif in the molecule.

In the crystal, no significant intermoelcular hydrogen bondings are observed. The crystal packing is stabilized by Cg3—Cg3 interaction with centroid–centroid distance of 3.8855 (13) Å [symmetry code: 1-X,1-Y,1-Z; Cg3 is the centroid of C1–C6 ring].

Related literature top

For the pharmacological activity of 2-aminothiazole derivatives, see: Lednicer & Mitscher (1977); Vagdevi et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975). For further synthetic details, see: El-Subbagh et al. (1999). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of N-(4-(4-bromophenyl)thiazol-2-yl)-4-chlorobutanamide (359 mg, 1 mmol) and piperidine (340 mg, 4 mmol) in dry toluene was stirred and heated to reflux. After 12 h, the mixture was cooled down to room temperature and the solvent was removed in vacuum. The residue was purified by chromatotron using CHCl3:EtOAc (9:1) as eluting system and the title compound was then crystallized from ethanol (El-Subbagh et al., 1999) as colourless plates.

Refinement top

The atom H1N2 was located from difference fourier map and refined freely [N2—H1N2 = 0.93 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 and 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C). Twelve outliers (4 5 5), (4 4 5), (4 3 6), (-3 - 2 7), (-3 - 3 7), (4 5 4), (4 4 6), (-2 - 2 5), (4 1 5), (-3 - 2 8), (1 1 2) and (3 1 0) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. The hydrogen bond is indicated by a dashed line.
N-[4-(4-Bromophenyl)thiazol-2-yl]-4-(piperidin-1-yl)butanamide top
Crystal data top
C18H22BrN3OSZ = 2
Mr = 408.36F(000) = 420
Triclinic, P1Dx = 1.520 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8276 (7) ÅCell parameters from 5955 reflections
b = 9.2782 (9) Åθ = 3.1–29.8°
c = 14.5907 (14) ŵ = 2.43 mm1
α = 88.812 (2)°T = 100 K
β = 86.085 (3)°Plate, colourless
γ = 75.394 (2)°0.37 × 0.14 × 0.05 mm
V = 892.33 (15) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5019 independent reflections
Radiation source: fine-focus sealed tube4117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 29.9°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.467, Tmax = 0.890k = 1212
17762 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.091P]
where P = (Fo2 + 2Fc2)/3
5019 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 1.80 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C18H22BrN3OSγ = 75.394 (2)°
Mr = 408.36V = 892.33 (15) Å3
Triclinic, P1Z = 2
a = 6.8276 (7) ÅMo Kα radiation
b = 9.2782 (9) ŵ = 2.43 mm1
c = 14.5907 (14) ÅT = 100 K
α = 88.812 (2)°0.37 × 0.14 × 0.05 mm
β = 86.085 (3)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5019 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4117 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.890Rint = 0.042
17762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.80 e Å3
5019 reflectionsΔρmin = 0.86 e Å3
221 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82800 (4)0.81297 (2)0.549438 (15)0.02561 (9)
S10.28942 (9)0.30257 (5)0.19656 (4)0.01885 (13)
O10.0331 (3)0.31993 (16)0.09887 (11)0.0220 (4)
N10.2084 (3)0.56893 (18)0.26349 (12)0.0153 (3)
N20.0331 (3)0.54008 (18)0.16321 (12)0.0154 (4)
N30.2166 (3)0.83694 (18)0.14310 (12)0.0154 (4)
C10.3846 (4)0.6922 (2)0.40953 (15)0.0197 (4)
H1A0.24290.72880.40380.024*
C20.4825 (4)0.7643 (2)0.46664 (15)0.0221 (5)
H2A0.40830.84900.50070.027*
C30.6911 (4)0.7117 (2)0.47378 (15)0.0187 (4)
C40.8022 (4)0.5877 (2)0.42470 (14)0.0191 (4)
H4A0.94450.55320.42940.023*
C50.7013 (4)0.5153 (2)0.36861 (14)0.0180 (4)
H5A0.77600.42980.33540.022*
C60.4927 (3)0.5654 (2)0.35987 (13)0.0142 (4)
C70.3892 (3)0.4898 (2)0.29872 (14)0.0155 (4)
C80.4539 (4)0.3451 (2)0.26968 (15)0.0197 (4)
H8A0.57410.27700.28760.024*
C90.1412 (3)0.4853 (2)0.20874 (14)0.0146 (4)
C100.1143 (4)0.4531 (2)0.11071 (13)0.0154 (4)
C110.3088 (4)0.5259 (2)0.06591 (15)0.0177 (4)
H11A0.39450.45410.06980.021*
H11B0.27250.53860.00010.021*
C120.4417 (4)0.6759 (2)0.10078 (15)0.0189 (4)
H12A0.57640.69170.07540.023*
H12B0.46210.66980.16840.023*
C130.3601 (4)0.8121 (2)0.07711 (15)0.0190 (4)
H13A0.29070.79930.01490.023*
H13B0.47540.90150.07580.023*
C140.3271 (4)0.9117 (2)0.22672 (15)0.0189 (4)
H14A0.41430.85030.25530.023*
H14B0.41581.00920.20980.023*
C150.1798 (4)0.9352 (2)0.29574 (15)0.0231 (5)
H15A0.10060.83730.31720.028*
H15B0.25730.98970.34970.028*
C160.0344 (4)1.0234 (2)0.25308 (16)0.0231 (5)
H16A0.11061.12680.24020.028*
H16B0.06911.02720.29670.028*
C170.0692 (4)0.9490 (2)0.16389 (16)0.0211 (5)
H17A0.15181.01200.13320.025*
H17B0.16130.85150.17820.025*
C180.0854 (4)0.9263 (2)0.09965 (15)0.0195 (4)
H18A0.17011.02440.08140.023*
H18B0.01400.87540.04340.023*
H1N20.083 (5)0.643 (3)0.163 (2)0.031 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02680 (16)0.02875 (14)0.02536 (13)0.01282 (10)0.00715 (10)0.00372 (9)
S10.0190 (3)0.0121 (2)0.0252 (3)0.0019 (2)0.0067 (2)0.00195 (18)
O10.0235 (9)0.0153 (7)0.0278 (8)0.0044 (7)0.0060 (7)0.0037 (6)
N10.0127 (9)0.0143 (7)0.0193 (8)0.0041 (7)0.0024 (7)0.0009 (6)
N20.0123 (9)0.0126 (7)0.0220 (8)0.0037 (7)0.0043 (7)0.0018 (6)
N30.0147 (9)0.0136 (7)0.0187 (8)0.0050 (7)0.0002 (7)0.0003 (6)
C10.0156 (11)0.0191 (9)0.0237 (10)0.0031 (9)0.0020 (8)0.0008 (8)
C20.0205 (12)0.0209 (9)0.0248 (10)0.0050 (9)0.0012 (9)0.0036 (8)
C30.0215 (12)0.0210 (9)0.0175 (9)0.0117 (9)0.0053 (8)0.0019 (7)
C40.0167 (11)0.0223 (9)0.0199 (9)0.0070 (9)0.0053 (8)0.0029 (8)
C50.0172 (11)0.0184 (9)0.0187 (9)0.0049 (8)0.0020 (8)0.0003 (7)
C60.0145 (10)0.0143 (8)0.0156 (8)0.0062 (8)0.0038 (8)0.0018 (7)
C70.0125 (10)0.0161 (8)0.0181 (9)0.0043 (8)0.0004 (8)0.0022 (7)
C80.0170 (12)0.0169 (9)0.0247 (10)0.0022 (8)0.0061 (9)0.0004 (7)
C90.0133 (10)0.0131 (8)0.0178 (8)0.0044 (8)0.0001 (8)0.0008 (6)
C100.0151 (11)0.0169 (8)0.0160 (8)0.0076 (8)0.0003 (8)0.0000 (7)
C110.0147 (11)0.0174 (9)0.0225 (9)0.0064 (8)0.0031 (8)0.0014 (7)
C120.0158 (11)0.0190 (9)0.0222 (10)0.0043 (8)0.0036 (8)0.0011 (7)
C130.0168 (11)0.0171 (9)0.0240 (10)0.0050 (8)0.0053 (9)0.0017 (7)
C140.0178 (11)0.0163 (9)0.0226 (10)0.0061 (8)0.0050 (9)0.0026 (7)
C150.0300 (14)0.0195 (9)0.0209 (10)0.0090 (10)0.0031 (9)0.0032 (8)
C160.0243 (13)0.0198 (9)0.0269 (11)0.0087 (9)0.0015 (9)0.0039 (8)
C170.0156 (11)0.0171 (9)0.0322 (11)0.0075 (8)0.0013 (9)0.0029 (8)
C180.0193 (12)0.0190 (9)0.0218 (9)0.0088 (9)0.0022 (8)0.0003 (7)
Geometric parameters (Å, º) top
Br1—C31.898 (2)C8—H8A0.9500
S1—C81.720 (2)C10—C111.515 (3)
S1—C91.7473 (19)C11—C121.533 (3)
O1—C101.231 (2)C11—H11A0.9900
N1—C91.306 (3)C11—H11B0.9900
N1—C71.393 (3)C12—C131.529 (3)
N2—C101.362 (3)C12—H12A0.9900
N2—C91.380 (3)C12—H12B0.9900
N2—H1N20.93 (3)C13—H13A0.9900
N3—C181.472 (3)C13—H13B0.9900
N3—C141.478 (3)C14—C151.527 (4)
N3—C131.480 (3)C14—H14A0.9900
C1—C21.383 (3)C14—H14B0.9900
C1—C61.407 (3)C15—C161.532 (4)
C1—H1A0.9500C15—H15A0.9900
C2—C31.394 (4)C15—H15B0.9900
C2—H2A0.9500C16—C171.528 (3)
C3—C41.390 (3)C16—H16A0.9900
C4—C51.389 (3)C16—H16B0.9900
C4—H4A0.9500C17—C181.514 (3)
C5—C61.396 (3)C17—H17A0.9900
C5—H5A0.9500C17—H17B0.9900
C6—C71.466 (3)C18—H18A0.9900
C7—C81.369 (3)C18—H18B0.9900
C8—S1—C988.45 (10)H11A—C11—H11B106.9
C9—N1—C7110.70 (17)C13—C12—C11116.0 (2)
C10—N2—C9122.88 (17)C13—C12—H12A108.3
C10—N2—H1N2121 (2)C11—C12—H12A108.3
C9—N2—H1N2116 (2)C13—C12—H12B108.3
C18—N3—C14110.36 (17)C11—C12—H12B108.3
C18—N3—C13109.99 (17)H12A—C12—H12B107.4
C14—N3—C13110.74 (18)N3—C13—C12113.05 (17)
C2—C1—C6120.7 (2)N3—C13—H13A109.0
C2—C1—H1A119.7C12—C13—H13A109.0
C6—C1—H1A119.7N3—C13—H13B109.0
C1—C2—C3119.5 (2)C12—C13—H13B109.0
C1—C2—H2A120.3H13A—C13—H13B107.8
C3—C2—H2A120.3N3—C14—C15110.96 (19)
C4—C3—C2121.1 (2)N3—C14—H14A109.4
C4—C3—Br1119.07 (19)C15—C14—H14A109.4
C2—C3—Br1119.76 (17)N3—C14—H14B109.4
C5—C4—C3118.7 (2)C15—C14—H14B109.4
C5—C4—H4A120.6H14A—C14—H14B108.0
C3—C4—H4A120.6C14—C15—C16111.38 (19)
C4—C5—C6121.5 (2)C14—C15—H15A109.4
C4—C5—H5A119.2C16—C15—H15A109.4
C6—C5—H5A119.2C14—C15—H15B109.4
C5—C6—C1118.5 (2)C16—C15—H15B109.4
C5—C6—C7120.87 (18)H15A—C15—H15B108.0
C1—C6—C7120.6 (2)C17—C16—C15109.71 (19)
C8—C7—N1114.3 (2)C17—C16—H16A109.7
C8—C7—C6126.45 (19)C15—C16—H16A109.7
N1—C7—C6119.23 (17)C17—C16—H16B109.7
C7—C8—S1111.31 (17)C15—C16—H16B109.7
C7—C8—H8A124.3H16A—C16—H16B108.2
S1—C8—H8A124.3C18—C17—C16111.1 (2)
N1—C9—N2121.60 (17)C18—C17—H17A109.4
N1—C9—S1115.24 (16)C16—C17—H17A109.4
N2—C9—S1123.16 (15)C18—C17—H17B109.4
O1—C10—N2121.7 (2)C16—C17—H17B109.4
O1—C10—C11120.4 (2)H17A—C17—H17B108.0
N2—C10—C11117.80 (17)N3—C18—C17111.59 (18)
C10—C11—C12120.40 (18)N3—C18—H18A109.3
C10—C11—H11A107.2C17—C18—H18A109.3
C12—C11—H11A107.2N3—C18—H18B109.3
C10—C11—H11B107.2C17—C18—H18B109.3
C12—C11—H11B107.2H18A—C18—H18B108.0
C6—C1—C2—C31.0 (3)C10—N2—C9—N1175.4 (2)
C1—C2—C3—C40.2 (3)C10—N2—C9—S15.7 (3)
C1—C2—C3—Br1178.34 (17)C8—S1—C9—N10.78 (18)
C2—C3—C4—C50.7 (3)C8—S1—C9—N2178.24 (19)
Br1—C3—C4—C5179.21 (16)C9—N2—C10—O11.9 (3)
C3—C4—C5—C60.8 (3)C9—N2—C10—C11178.70 (19)
C4—C5—C6—C10.0 (3)O1—C10—C11—C12162.6 (2)
C4—C5—C6—C7178.56 (19)N2—C10—C11—C1218.0 (3)
C2—C1—C6—C50.9 (3)C10—C11—C12—C1373.2 (3)
C2—C1—C6—C7179.45 (19)C18—N3—C13—C12157.54 (18)
C9—N1—C7—C80.6 (3)C14—N3—C13—C1280.2 (2)
C9—N1—C7—C6178.28 (19)C11—C12—C13—N384.7 (2)
C5—C6—C7—C823.5 (3)C18—N3—C14—C1558.9 (2)
C1—C6—C7—C8158.0 (2)C13—N3—C14—C15179.05 (17)
C5—C6—C7—N1155.2 (2)N3—C14—C15—C1656.3 (2)
C1—C6—C7—N123.3 (3)C14—C15—C16—C1752.9 (3)
N1—C7—C8—S10.0 (3)C15—C16—C17—C1853.2 (2)
C6—C7—C8—S1178.77 (17)C14—N3—C18—C1759.7 (2)
C9—S1—C8—C70.39 (18)C13—N3—C18—C17177.78 (17)
C7—N1—C9—N2178.11 (19)C16—C17—C18—N357.3 (2)
C7—N1—C9—S10.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N30.93 (3)1.83 (3)2.742 (2)167 (3)

Experimental details

Crystal data
Chemical formulaC18H22BrN3OS
Mr408.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8276 (7), 9.2782 (9), 14.5907 (14)
α, β, γ (°)88.812 (2), 86.085 (3), 75.394 (2)
V3)892.33 (15)
Z2
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.37 × 0.14 × 0.05
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.467, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
17762, 5019, 4117
Rint0.042
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.07
No. of reflections5019
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.80, 0.86

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N30.93 (3)1.83 (3)2.742 (2)167 (3)
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAG and AAK thank the Deanship of Scientific Research and Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Subbagh, H. I., Abadi, A. H. & Lehmann, J. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 137–142.  CAS Google Scholar
First citationLednicer, D. & Mitscher, L. A. (1977). The Organic Chemistry of Drug Synthesis, Vol. 1. New York: Wiley Interscience.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVagdevi, H. M., Vaidya, V. P., Latha, K. P. & Padmashali, B. (2006). Indian J. Pharm. Sci. 68, 719–725.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds