organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Methyl-N′-(3-nitro­benzyl­­idene)benzohydrazide

aCollege of Chemistry & Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China
*Correspondence e-mail: liushiyong2012@yahoo.cn

(Received 28 April 2012; accepted 29 April 2012; online 5 May 2012)

In the title compound, C15H13N3O3, the dihedral angle between the benzene rings is 1.01 (3)° and that between the nitro group and its attached ring is 5.99 (15)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds generating C(4) chains along [010].

Related literature

For related structures, see: Liu & You (2010[Liu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1652.]); Liu & Wang (2010[Liu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.]); Xu et al. (2009[Xu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3

  • Mr = 283.28

  • Orthorhombic, P c a 21

  • a = 32.657 (3) Å

  • b = 4.7861 (15) Å

  • c = 8.7596 (12) Å

  • V = 1369.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 9086 measured reflections

  • 2539 independent reflections

  • 2036 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.103

  • S = 1.04

  • 2539 reflections

  • 195 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.89 (1) 2.13 (2) 2.909 (3) 146 (2)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our work on similar compounds (Liu & You, 2010; Liu & Wang, 2010), we report herein the crystal structure of the title compound a new hydrazone.

The molecular structure of the title compound is shown in Fig. 1. The two benzene ring system are inclined at a dihedral angle of 0.6 (3)°. All the bond lengths are comparable to those observed in related structures (Xu et al., 2009; Shafiq et al., 2009) and those we reported previously.

In the crystal structure, molecules are linked through N–H···O hydrogen bonds, to form one-dimensional chains running along the b axis (Fig. 2 and Table 1).

Related literature top

For related structures, see: Liu & You (2010); Liu & Wang (2010); Xu et al. (2009); Shafiq et al. (2009).

Experimental top

The title compound was prepared by the condensation reaction of 3-nitrobenzaldehyde (0.05 mol, 7.6 g) and 4-methylbenzohydrazide (0.05 mol, 7.5 g) in anhydrous methanol (100 ml) at ambient temperature. Yellow block-shaped single crystals were obtained by slow evaporation of the solution for several days.

Refinement top

Anomalous dispersion was negligible and the absolute structure could not be determined in the present experiment. H3 was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-4-Methyl-N'-(3-nitrobenzylidene)benzohydrazide top
Crystal data top
C15H13N3O3Dx = 1.374 Mg m3
Mr = 283.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1981 reflections
a = 32.657 (3) Åθ = 2.5–24.3°
b = 4.7861 (15) ŵ = 0.10 mm1
c = 8.7596 (12) ÅT = 298 K
V = 1369.1 (5) Å3Block, yellow
Z = 40.20 × 0.20 × 0.17 mm
F(000) = 592
Data collection top
Bruker SMART CCD
diffractometer
2539 independent reflections
Radiation source: fine-focus sealed tube2036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3937
Tmin = 0.981, Tmax = 0.984k = 55
9086 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.1113P]
where P = (Fo2 + 2Fc2)/3
2539 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H13N3O3V = 1369.1 (5) Å3
Mr = 283.28Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 32.657 (3) ŵ = 0.10 mm1
b = 4.7861 (15) ÅT = 298 K
c = 8.7596 (12) Å0.20 × 0.20 × 0.17 mm
Data collection top
Bruker SMART CCD
diffractometer
2539 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2036 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.045
9086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.13 e Å3
2539 reflectionsΔρmin = 0.17 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85121 (8)0.5734 (5)0.4452 (2)0.0467 (6)
N20.70734 (7)0.2646 (4)0.2869 (3)0.0444 (5)
N30.66666 (7)0.2015 (4)0.2812 (3)0.0455 (5)
O10.88853 (7)0.5929 (5)0.4514 (3)0.0749 (7)
O20.82822 (7)0.7214 (4)0.5169 (2)0.0597 (6)
O30.64841 (6)0.6273 (4)0.3664 (2)0.0553 (5)
C10.77578 (8)0.1201 (5)0.2510 (3)0.0413 (6)
C20.79253 (8)0.3213 (5)0.3444 (3)0.0377 (6)
H20.77580.42890.40720.045*
C30.83377 (8)0.3605 (5)0.3438 (3)0.0382 (6)
C40.85976 (8)0.2118 (6)0.2508 (3)0.0488 (7)
H40.88780.24480.25210.059*
C50.84325 (9)0.0139 (6)0.1563 (3)0.0527 (7)
H50.86010.08810.09140.063*
C60.80177 (8)0.0341 (5)0.1572 (3)0.0457 (7)
H60.79090.17170.09420.055*
C70.73153 (8)0.0702 (6)0.2463 (3)0.0479 (7)
H70.72130.10120.21400.057*
C80.63869 (8)0.3942 (5)0.3216 (3)0.0418 (6)
C90.59528 (8)0.3070 (5)0.3091 (3)0.0405 (6)
C100.56597 (9)0.4440 (6)0.3943 (4)0.0591 (8)
H100.57390.58410.46170.071*
C110.52522 (10)0.3763 (7)0.3809 (4)0.0677 (9)
H110.50620.46800.44180.081*
C120.51204 (9)0.1772 (7)0.2801 (4)0.0600 (8)
C130.54139 (9)0.0401 (7)0.1948 (3)0.0622 (9)
H130.53330.09880.12690.075*
C140.58242 (9)0.1047 (6)0.2083 (3)0.0533 (8)
H140.60150.01070.14880.064*
C150.46734 (9)0.0998 (9)0.2613 (5)0.0889 (12)
H15A0.45050.24890.29900.133*
H15B0.46170.06780.31770.133*
H15C0.46150.06920.15510.133*
H30.6588 (7)0.025 (3)0.266 (3)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0515 (16)0.0457 (13)0.0428 (13)0.0090 (12)0.0092 (12)0.0008 (11)
N20.0438 (14)0.0381 (12)0.0512 (12)0.0091 (10)0.0044 (11)0.0003 (11)
N30.0398 (13)0.0312 (12)0.0655 (15)0.0094 (10)0.0000 (11)0.0075 (12)
O10.0505 (14)0.0829 (16)0.0915 (17)0.0158 (12)0.0164 (12)0.0160 (13)
O20.0715 (14)0.0567 (13)0.0507 (12)0.0013 (12)0.0013 (10)0.0194 (11)
O30.0679 (13)0.0328 (10)0.0651 (12)0.0097 (9)0.0031 (11)0.0116 (9)
C10.0447 (16)0.0338 (14)0.0456 (15)0.0006 (12)0.0042 (13)0.0025 (12)
C20.0428 (16)0.0323 (12)0.0379 (14)0.0017 (11)0.0006 (11)0.0043 (11)
C30.0446 (15)0.0355 (13)0.0343 (14)0.0024 (12)0.0025 (12)0.0003 (11)
C40.0428 (16)0.0509 (17)0.0526 (17)0.0012 (13)0.0004 (14)0.0031 (15)
C50.0582 (19)0.0543 (18)0.0456 (15)0.0114 (14)0.0079 (15)0.0043 (15)
C60.0583 (18)0.0373 (15)0.0415 (14)0.0008 (13)0.0084 (14)0.0067 (13)
C70.0512 (18)0.0368 (15)0.0555 (17)0.0060 (13)0.0034 (14)0.0054 (13)
C80.0505 (16)0.0337 (14)0.0412 (15)0.0047 (12)0.0005 (12)0.0008 (12)
C90.0473 (16)0.0310 (13)0.0433 (15)0.0013 (11)0.0024 (12)0.0023 (11)
C100.062 (2)0.0535 (17)0.0621 (19)0.0044 (15)0.0135 (16)0.0127 (16)
C110.059 (2)0.065 (2)0.078 (2)0.0081 (17)0.0222 (18)0.007 (2)
C120.0511 (19)0.068 (2)0.0614 (19)0.0021 (15)0.0041 (16)0.0096 (18)
C130.055 (2)0.071 (2)0.0607 (19)0.0138 (16)0.0062 (15)0.0175 (16)
C140.0497 (19)0.0525 (18)0.0577 (18)0.0012 (14)0.0035 (13)0.0163 (14)
C150.048 (2)0.127 (3)0.091 (3)0.002 (2)0.000 (2)0.008 (3)
Geometric parameters (Å, º) top
N1—O21.208 (3)C6—H60.9300
N1—O11.224 (3)C7—H70.9300
N1—C31.467 (3)C8—C91.482 (3)
N2—C71.272 (3)C9—C141.376 (3)
N2—N31.364 (3)C9—C101.379 (4)
N3—C81.345 (3)C10—C111.375 (4)
N3—H30.891 (10)C10—H100.9300
O3—C81.225 (3)C11—C121.369 (5)
C1—C21.377 (3)C11—H110.9300
C1—C61.393 (4)C12—C131.381 (4)
C1—C71.465 (3)C12—C151.515 (4)
C2—C31.360 (3)C13—C141.380 (4)
C2—H20.9300C13—H130.9300
C3—C41.375 (4)C14—H140.9300
C4—C51.369 (4)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.374 (4)C15—H15C0.9600
C5—H50.9300
O2—N1—O1123.4 (2)O3—C8—N3122.2 (2)
O2—N1—C3118.7 (2)O3—C8—C9121.9 (2)
O1—N1—C3117.8 (2)N3—C8—C9115.9 (2)
C7—N2—N3115.6 (2)C14—C9—C10118.0 (3)
C8—N3—N2120.0 (2)C14—C9—C8122.5 (2)
C8—N3—H3119.5 (16)C10—C9—C8119.4 (2)
N2—N3—H3119.7 (16)C11—C10—C9120.9 (3)
C2—C1—C6118.6 (2)C11—C10—H10119.5
C2—C1—C7121.5 (2)C9—C10—H10119.5
C6—C1—C7119.9 (2)C12—C11—C10121.6 (3)
C3—C2—C1119.2 (2)C12—C11—H11119.2
C3—C2—H2120.4C10—C11—H11119.2
C1—C2—H2120.4C11—C12—C13117.5 (3)
C2—C3—C4122.8 (2)C11—C12—C15122.9 (3)
C2—C3—N1118.6 (2)C13—C12—C15119.6 (3)
C4—C3—N1118.6 (2)C14—C13—C12121.4 (3)
C5—C4—C3118.3 (3)C14—C13—H13119.3
C5—C4—H4120.9C12—C13—H13119.3
C3—C4—H4120.9C9—C14—C13120.6 (3)
C4—C5—C6120.0 (3)C9—C14—H14119.7
C4—C5—H5120.0C13—C14—H14119.7
C6—C5—H5120.0C12—C15—H15A109.5
C5—C6—C1121.0 (2)C12—C15—H15B109.5
C5—C6—H6119.5H15A—C15—H15B109.5
C1—C6—H6119.5C12—C15—H15C109.5
N2—C7—C1119.0 (2)H15A—C15—H15C109.5
N2—C7—H7120.5H15B—C15—H15C109.5
C1—C7—H7120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.89 (1)2.13 (2)2.909 (3)146 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O3
Mr283.28
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)32.657 (3), 4.7861 (15), 8.7596 (12)
V3)1369.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9086, 2539, 2036
Rint0.045
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.103, 1.04
No. of reflections2539
No. of parameters195
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.891 (10)2.128 (18)2.909 (3)146 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge the Zhejiang Provincial Natural Science Foundation of China (project No. Y12B020017).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds