organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-N′-(2-phenyl­acet­yl)acetohydrazide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title compound, C16H16N2O2, the N′-acetyl­acetohydrazide group is approximately planar (r.m.s. deviation = 0.018 Å for the eight non-H atoms) and makes dihedral angles of 81.92 (6) and 65.19 (6)° with the terminal phenyl rings. The phenyl rings form a dihedral angle of 62.60 (7)°. In the crystal, mol­ecules are linked into sheets lying parallel to (001) by N—H⋯O and C—H⋯O hydrogen bonds. One O atom accepts one N—H⋯O and one C—H⋯O hydrogen bond and the other O atom accepts one N—H⋯O and two C—H⋯O hydrogen bonds. The N—H⋯O hydrogen bonds lead to R22(8) loops and the C—H⋯O hydrogen bonds generate R21(6) loops.

Related literature

For general background to and the pharmaceutical applications of hydrazine derivatives, see: Bredihhin & Mäeorg (2008[Bredihhin, A. & Mäeorg, U. (2008). Tetrahedron, 64, 6788-6793.]); Ragnarsson (2001[Ragnarsson, U. (2001). Chem. Soc. Rev. 30, 205-213.]); Ling et al. (2001[Ling, L., Urichuk, L. J., Sloley, B. D., Coutts, R. T., Baker, G. B., Shan, J. J. & Pang, P. K. T. (2001). Bioorg. Med. Chem. Lett. 11, 2715-2717.]). For further synthesis details, see: Magedov & Smushkevich (1991[Magedov, I. V. & Smushkevich, Y. I. (1991). Synthesis, 10, 845-848.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2

  • Mr = 268.31

  • Triclinic, [P \overline 1]

  • a = 5.4531 (6) Å

  • b = 7.9283 (9) Å

  • c = 15.1758 (17) Å

  • α = 94.271 (2)°

  • β = 92.613 (2)°

  • γ = 90.830 (2)°

  • V = 653.50 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.14 × 0.05 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.996

  • 12991 measured reflections

  • 3458 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.134

  • S = 1.04

  • 3458 reflections

  • 245 parameters

  • All H-atom parameters refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.867 (16) 1.970 (16) 2.8076 (15) 162.4 (16)
C10—H10A⋯O1i 0.971 (16) 2.465 (16) 3.3103 (18) 145.3 (13)
N1—H1N1⋯O2ii 0.907 (16) 1.948 (16) 2.8283 (15) 163.2 (15)
C7—H7A⋯O2ii 0.973 (16) 2.479 (16) 3.3209 (18) 144.8 (13)
C7—H7B⋯O2iii 1.00 (2) 2.56 (2) 3.4929 (19) 155.2 (13)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazine derivatives are widely used in the pharmaceutical applications and also as precursors in organic synthesis (Bredihhin & Mäeorg, 2008). Several hydrazine derivatives were shown to be effective for treatment of tuberculosis, Parkinson's disease and hypertension (Ragnarsson, 2001). Moreover, some hydrazines possess neuroprotective activity and are used as antidepressant drugs (Ling et al., 2001).

In the title compound, Fig. 1, the N'-acetylacetohydrazide moiety (O1/O2/N1/N2/C7-C10) is approximately planar (r.m.s. deviation = 0.018 Å for the 8 non-H atoms) and makes dihedral angles of 81.92 (6) and 65.19 (6)° with the two terminal benzene rings (C1-C6 and C11-C16), respectively. The two benzene rings form a dihedral angle of 62.60 (7)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal (Fig.2), molecules are linked into planes parallel to the (001) via intermolecular N1–H1N1···O2, C7–H7A···O2 and C7–H7B···O2 trifurcated acceptor bonds (Table 1) and N2–H1N2···O1 and C10–H10A···O1 bifurcated acceptor bonds (Table 1), generating R21(6) ring motifs (Bernstein et al., 1995).

Related literature top

For general background to and the pharmaceutical applications of hydrazine derivatives, see: Bredihhin & Mäeorg (2008); Ragnarsson (2001); Ling et al. (2001). For further synthesis details, see: Magedov & Smushkevich (1991). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the reaction of 2-phenylacetyl chloride with 2-phenylacetohydrazide in the presence of sodium carbonate in water at 5-10 °C (Magedov & Smushkevich, 1991).

Refinement top

All H atoms were located in a difference Fourier map and refined freely with N–H = 0.869 (18)-0.908 (19) Å and C–H = 0.942 (19)-1.013 (18) Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-Phenyl-N'-(2-phenylacetyl)acetohydrazide top
Crystal data top
C16H16N2O2Z = 2
Mr = 268.31F(000) = 284
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4531 (6) ÅCell parameters from 3410 reflections
b = 7.9283 (9) Åθ = 4.0–30.0°
c = 15.1758 (17) ŵ = 0.09 mm1
α = 94.271 (2)°T = 100 K
β = 92.613 (2)°Needle, colourless
γ = 90.830 (2)°0.35 × 0.14 × 0.05 mm
V = 653.50 (13) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3458 independent reflections
Radiation source: fine-focus sealed tube2428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 29.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.968, Tmax = 0.996k = 1010
12991 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.1901P]
where P = (Fo2 + 2Fc2)/3
3458 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H16N2O2γ = 90.830 (2)°
Mr = 268.31V = 653.50 (13) Å3
Triclinic, P1Z = 2
a = 5.4531 (6) ÅMo Kα radiation
b = 7.9283 (9) ŵ = 0.09 mm1
c = 15.1758 (17) ÅT = 100 K
α = 94.271 (2)°0.35 × 0.14 × 0.05 mm
β = 92.613 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2428 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.996Rint = 0.030
12991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.134All H-atom parameters refined
S = 1.04Δρmax = 0.38 e Å3
3458 reflectionsΔρmin = 0.29 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40065 (18)0.64320 (12)0.06665 (6)0.0165 (2)
O21.08994 (18)0.85895 (12)0.07188 (6)0.0166 (2)
N10.7067 (2)0.81353 (14)0.02864 (7)0.0131 (2)
N20.7869 (2)0.68791 (14)0.03185 (7)0.0136 (2)
C10.2796 (3)0.94134 (17)0.29275 (9)0.0154 (3)
C20.3026 (3)0.90738 (18)0.38118 (9)0.0185 (3)
C30.4978 (3)0.81340 (18)0.41175 (9)0.0184 (3)
C40.6710 (3)0.75379 (18)0.35344 (9)0.0180 (3)
C50.6502 (2)0.78955 (17)0.26515 (9)0.0153 (3)
C60.4540 (2)0.88282 (16)0.23362 (8)0.0127 (3)
C70.4336 (3)0.92581 (17)0.13786 (8)0.0129 (3)
C80.5093 (2)0.78171 (16)0.07486 (8)0.0120 (3)
C90.9839 (2)0.71983 (16)0.07846 (8)0.0120 (3)
C101.0630 (3)0.57244 (17)0.13972 (8)0.0137 (3)
C111.0445 (2)0.61346 (16)0.23584 (8)0.0127 (3)
C121.2278 (3)0.70965 (18)0.27062 (9)0.0162 (3)
C131.2100 (3)0.74792 (18)0.35846 (9)0.0186 (3)
C141.0109 (3)0.68811 (19)0.41296 (9)0.0200 (3)
C150.8286 (3)0.59203 (19)0.37894 (9)0.0196 (3)
C160.8446 (3)0.55437 (17)0.29055 (9)0.0161 (3)
H1N10.787 (3)0.915 (2)0.0321 (11)0.023 (5)*
H1N20.705 (3)0.593 (2)0.0350 (11)0.017 (4)*
H1A0.148 (3)1.007 (2)0.2720 (11)0.022 (4)*
H2A0.175 (3)0.951 (2)0.4219 (10)0.017 (4)*
H3A0.519 (4)0.786 (2)0.4710 (13)0.031 (5)*
H4A0.809 (3)0.686 (2)0.3727 (11)0.021 (4)*
H5A0.775 (3)0.747 (2)0.2245 (11)0.018 (4)*
H7A0.529 (3)1.028 (2)0.1304 (10)0.018 (4)*
H7B0.259 (4)0.953 (2)0.1223 (12)0.027 (5)*
H10A0.967 (3)0.471 (2)0.1318 (10)0.016 (4)*
H10B1.240 (3)0.554 (2)0.1200 (11)0.021 (4)*
H12A1.373 (3)0.757 (2)0.2322 (11)0.022 (4)*
H13A1.339 (3)0.814 (2)0.3815 (12)0.029 (5)*
H14A1.002 (3)0.713 (2)0.4733 (12)0.028 (5)*
H16A0.720 (3)0.489 (2)0.2662 (12)0.029 (5)*
H15A0.692 (3)0.549 (2)0.4190 (11)0.017 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0172 (5)0.0123 (5)0.0198 (5)0.0052 (4)0.0047 (4)0.0010 (4)
O20.0172 (5)0.0119 (5)0.0206 (5)0.0033 (4)0.0051 (4)0.0013 (4)
N10.0151 (6)0.0101 (5)0.0141 (5)0.0019 (4)0.0042 (4)0.0016 (4)
N20.0156 (6)0.0100 (5)0.0150 (5)0.0023 (4)0.0052 (4)0.0021 (4)
C10.0137 (6)0.0143 (6)0.0184 (6)0.0001 (5)0.0029 (5)0.0002 (5)
C20.0195 (7)0.0175 (7)0.0185 (7)0.0024 (5)0.0059 (5)0.0006 (5)
C30.0235 (8)0.0176 (7)0.0143 (6)0.0031 (6)0.0014 (5)0.0021 (5)
C40.0170 (7)0.0173 (7)0.0191 (7)0.0005 (5)0.0028 (5)0.0005 (5)
C50.0142 (6)0.0146 (6)0.0169 (6)0.0002 (5)0.0022 (5)0.0011 (5)
C60.0128 (6)0.0107 (6)0.0143 (6)0.0038 (5)0.0017 (5)0.0007 (5)
C70.0139 (6)0.0106 (6)0.0143 (6)0.0000 (5)0.0028 (5)0.0003 (5)
C80.0124 (6)0.0114 (6)0.0121 (6)0.0005 (5)0.0006 (5)0.0013 (4)
C90.0134 (6)0.0112 (6)0.0115 (6)0.0001 (5)0.0012 (5)0.0013 (4)
C100.0156 (7)0.0107 (6)0.0149 (6)0.0003 (5)0.0039 (5)0.0007 (5)
C110.0132 (6)0.0090 (6)0.0161 (6)0.0016 (5)0.0037 (5)0.0008 (5)
C120.0148 (7)0.0155 (6)0.0179 (6)0.0020 (5)0.0026 (5)0.0013 (5)
C130.0211 (7)0.0169 (7)0.0182 (7)0.0019 (5)0.0060 (5)0.0009 (5)
C140.0254 (8)0.0191 (7)0.0155 (6)0.0040 (6)0.0016 (6)0.0016 (5)
C150.0185 (7)0.0185 (7)0.0210 (7)0.0010 (6)0.0043 (6)0.0005 (5)
C160.0131 (6)0.0140 (6)0.0212 (7)0.0018 (5)0.0020 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—C81.2355 (16)C7—C81.5089 (18)
O2—C91.2332 (16)C7—H7A0.975 (18)
N1—C81.3426 (16)C7—H7B1.002 (19)
N1—N21.3922 (14)C9—C101.5183 (18)
N1—H1N10.908 (19)C10—C111.5172 (18)
N2—C91.3443 (16)C10—H10A0.972 (17)
N2—H1N20.869 (18)C10—H10B1.013 (18)
C1—C21.3888 (19)C11—C161.3934 (19)
C1—C61.3977 (18)C11—C121.3951 (18)
C1—H1A0.950 (18)C12—C131.3884 (19)
C2—C31.390 (2)C12—H12A1.009 (18)
C2—H2A1.000 (16)C13—C141.390 (2)
C3—C41.388 (2)C13—H13A0.963 (19)
C3—H3A0.942 (19)C14—C151.385 (2)
C4—C51.3899 (19)C14—H14A0.949 (18)
C4—H4A0.977 (17)C15—C161.3948 (19)
C5—C61.3960 (18)C15—H15A0.980 (17)
C5—H5A0.986 (17)C16—H16A0.954 (19)
C6—C71.5167 (18)
C8—N1—N2118.83 (11)O1—C8—N1121.88 (12)
C8—N1—H1N1123.8 (11)O1—C8—C7122.94 (12)
N2—N1—H1N1117.2 (11)N1—C8—C7115.18 (11)
C9—N2—N1118.90 (11)O2—C9—N2122.08 (12)
C9—N2—H1N2125.2 (11)O2—C9—C10123.08 (12)
N1—N2—H1N2115.9 (11)N2—C9—C10114.84 (11)
C2—C1—C6120.35 (13)C11—C10—C9111.62 (11)
C2—C1—H1A120.4 (10)C11—C10—H10A110.1 (9)
C6—C1—H1A119.2 (10)C9—C10—H10A111.1 (10)
C1—C2—C3120.42 (13)C11—C10—H10B110.7 (10)
C1—C2—H2A118.5 (9)C9—C10—H10B104.3 (10)
C3—C2—H2A121.0 (9)H10A—C10—H10B108.8 (14)
C4—C3—C2119.67 (13)C16—C11—C12119.24 (12)
C4—C3—H3A117.1 (12)C16—C11—C10120.29 (12)
C2—C3—H3A123.2 (12)C12—C11—C10120.47 (12)
C3—C4—C5120.00 (13)C13—C12—C11120.42 (14)
C3—C4—H4A121.6 (10)C13—C12—H12A118.5 (10)
C5—C4—H4A118.4 (10)C11—C12—H12A121.0 (10)
C4—C5—C6120.81 (12)C12—C13—C14120.18 (13)
C4—C5—H5A119.2 (9)C12—C13—H13A119.3 (11)
C6—C5—H5A120.0 (9)C14—C13—H13A120.5 (11)
C5—C6—C1118.74 (12)C15—C14—C13119.70 (13)
C5—C6—C7121.05 (11)C15—C14—H14A120.6 (12)
C1—C6—C7120.17 (12)C13—C14—H14A119.7 (12)
C8—C7—C6112.43 (11)C14—C15—C16120.35 (14)
C8—C7—H7A111.1 (10)C14—C15—H15A118.1 (10)
C6—C7—H7A110.0 (9)C16—C15—H15A121.5 (10)
C8—C7—H7B108.1 (11)C11—C16—C15120.10 (13)
C6—C7—H7B108.9 (10)C11—C16—H16A118.7 (11)
H7A—C7—H7B105.9 (14)C15—C16—H16A121.2 (11)
C8—N1—N2—C9179.72 (11)N1—N2—C9—O22.93 (19)
C6—C1—C2—C30.6 (2)N1—N2—C9—C10177.53 (11)
C1—C2—C3—C40.2 (2)O2—C9—C10—C1161.91 (17)
C2—C3—C4—C50.6 (2)N2—C9—C10—C11117.63 (13)
C3—C4—C5—C61.1 (2)C9—C10—C11—C16100.39 (15)
C4—C5—C6—C10.6 (2)C9—C10—C11—C1280.05 (15)
C4—C5—C6—C7178.53 (13)C16—C11—C12—C130.8 (2)
C2—C1—C6—C50.2 (2)C10—C11—C12—C13179.64 (12)
C2—C1—C6—C7177.69 (13)C11—C12—C13—C141.1 (2)
C5—C6—C7—C839.28 (18)C12—C13—C14—C150.9 (2)
C1—C6—C7—C8142.87 (13)C13—C14—C15—C160.3 (2)
N2—N1—C8—O11.69 (19)C12—C11—C16—C150.3 (2)
N2—N1—C8—C7179.17 (11)C10—C11—C16—C15179.84 (12)
C6—C7—C8—O162.54 (17)C14—C15—C16—C110.1 (2)
C6—C7—C8—N1116.59 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.867 (16)1.970 (16)2.8076 (15)162.4 (16)
C10—H10A···O1i0.971 (16)2.465 (16)3.3103 (18)145.3 (13)
N1—H1N1···O2ii0.907 (16)1.948 (16)2.8283 (15)163.2 (15)
C7—H7A···O2ii0.973 (16)2.479 (16)3.3209 (18)144.8 (13)
C7—H7B···O2iii1.00 (2)2.56 (2)3.4929 (19)155.2 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O2
Mr268.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.4531 (6), 7.9283 (9), 15.1758 (17)
α, β, γ (°)94.271 (2), 92.613 (2), 90.830 (2)
V3)653.50 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.14 × 0.05
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12991, 3458, 2428
Rint0.030
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.134, 1.04
No. of reflections3458
No. of parameters245
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.867 (16)1.970 (16)2.8076 (15)162.4 (16)
C10—H10A···O1i0.971 (16)2.465 (16)3.3103 (18)145.3 (13)
N1—H1N1···O2ii0.907 (16)1.948 (16)2.8283 (15)163.2 (15)
C7—H7A···O2ii0.973 (16)2.479 (16)3.3209 (18)144.8 (13)
C7—H7B···O2iii1.00 (2)2.56 (2)3.4929 (19)155.2 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160) and the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBredihhin, A. & Mäeorg, U. (2008). Tetrahedron, 64, 6788–6793.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLing, L., Urichuk, L. J., Sloley, B. D., Coutts, R. T., Baker, G. B., Shan, J. J. & Pang, P. K. T. (2001). Bioorg. Med. Chem. Lett. 11, 2715–2717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMagedov, I. V. & Smushkevich, Y. I. (1991). Synthesis, 10, 845–848.  CrossRef Google Scholar
First citationRagnarsson, U. (2001). Chem. Soc. Rev. 30, 205–213.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds