organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Bromo­phen­yl)-3-methyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 30 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title compound, C11H9BrN4S, the 1,2,4-triazole ring is essentially planar (r.m.s. deviation = 0.020 Å) and makes a dihedral angle of 29.1 (5)° with the bromo­benzene ring. The 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. In the crystal, mol­ecules are linked by C—H⋯N inter­actions into sheets lying parallel to the (010) plane. The same N atom accepts two such hydrogen bonds.

Related literature

For general background to and the chemistry and biological activity of the title compound, see: Holla et al. (2001[Holla, B. S., Akberali, P. M. & Shivananda, M. K. (2001). Il Farmaco, 56, 919-927.]); Prasad et al. (1998[Prasad, A. R., Ramalingam, T., Rao, A. B., Diwan, P. V. & Sattur, P. B. (1998). Eur. J. Med. Chem. 24, 199-201.]); Dawood et al. (2005[Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621-627.]); Abdel-Aziz et al. (2007[Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573-1582.]); Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]). For further synthesis details, see: Dickinson & Jacobsen (1975[Dickinson, R. G. & Jacobsen, N. W. (1975). Aust. J. Chem. 28, 2435-2446.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9BrN4S

  • Mr = 309.19

  • Monoclinic, P c

  • a = 4.0047 (10) Å

  • b = 13.424 (3) Å

  • c = 10.938 (3) Å

  • β = 99.650 (5)°

  • V = 579.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 100 K

  • 0.46 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.281, Tmax = 0.910

  • 5127 measured reflections

  • 2087 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.152

  • S = 1.04

  • 2087 reflections

  • 149 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 3.33 e Å−3

  • Δρmin = −0.86 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 950 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N3i 0.97 2.56 3.185 (12) 122
C8—H8B⋯N3ii 0.97 2.31 3.191 (12) 151
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x+1, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For the background of the chemistry of 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives see: Holla et al. (2001) & Prasad et al. (1998). In continuation of our studies in the chemistry and biological activities of the title compound analogs (Dawood et al., 2005; Abdel-Aziz et al., 2007 & Abdel-Wahab et al., 2009), we reported the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the 1,2,4-triazole (N2-N4/C9/C10) is essentially planar (r.m.s. deviation = 0.020 Å) and makes a dihedral angle of 29.1 (5)° with the phenyl ring (C1-C6). The 3,6-dihydro-1,3,4-thiadiazine ring (S1/N1/N2/C7-C9) adopts a twist-boat conformation, with puckering parameters Q = 0.552 (8) Å, Θ = 66.6 (9)° and ϕ = 32.5 (10)° (Cremer & Pople, 1975). Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal (Fig.2), molecules are linked via C8–H8A···N3 and C8–H8B···N3 bonds (Table 1) into sheets parallel to the (010) plane.

Related literature top

For general background to and the chemistry and biological activity of the title compound, see: Holla et al. (2001); Prasad et al. (1998); Dawood et al. (2005); Abdel-Aziz et al. (2007); Abdel-Wahab et al. (2009). For further synthesis details, see: Dickinson & Jacobsen (1975). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The reaction of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol and 2-bromo-1-phenylethanone afforded the title compound in the form of colourless plates according to the reported method (Dickinson & Jacobsen, 1975).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The same Uij parameters were used for atom pair C10/C11. The highest difference peak is 0.97Å from Br1. The deepest difference hole is 0.89Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
6-(4-Bromophenyl)-3-methyl-7H-1,2,4- triazolo[3,4-b][1,3,4]thiadiazine top
Crystal data top
C11H9BrN4SF(000) = 308
Mr = 309.19Dx = 1.771 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2139 reflections
a = 4.0047 (10) Åθ = 2.4–27.8°
b = 13.424 (3) ŵ = 3.71 mm1
c = 10.938 (3) ÅT = 100 K
β = 99.650 (5)°Plate, colourless
V = 579.7 (2) Å30.46 × 0.10 × 0.03 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
2087 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 44
Tmin = 0.281, Tmax = 0.910k = 1516
5127 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.1109P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2087 reflectionsΔρmax = 3.33 e Å3
149 parametersΔρmin = 0.86 e Å3
2 restraintsAbsolute structure: Flack (1983), 950 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C11H9BrN4SV = 579.7 (2) Å3
Mr = 309.19Z = 2
Monoclinic, PcMo Kα radiation
a = 4.0047 (10) ŵ = 3.71 mm1
b = 13.424 (3) ÅT = 100 K
c = 10.938 (3) Å0.46 × 0.10 × 0.03 mm
β = 99.650 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1904 reflections with I > 2σ(I)
Tmin = 0.281, Tmax = 0.910Rint = 0.048
5127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.152Δρmax = 3.33 e Å3
S = 1.04Δρmin = 0.86 e Å3
2087 reflectionsAbsolute structure: Flack (1983), 950 Friedel pairs
149 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0080 (5)0.00421 (15)0.6539 (3)0.0264 (5)
Br10.93512 (13)0.44899 (5)1.15745 (9)0.0234 (3)
N10.0050 (18)0.2320 (5)0.6525 (9)0.0191 (15)
N20.2131 (19)0.1740 (6)0.5631 (6)0.0203 (16)
N30.420 (2)0.0529 (5)0.4417 (8)0.0308 (18)
N40.5398 (18)0.1444 (6)0.3863 (7)0.0288 (16)
C10.406 (2)0.2109 (6)0.9745 (7)0.0188 (15)
H1A0.33740.14780.99530.023*
C20.592 (2)0.2704 (6)1.0655 (7)0.0212 (16)
H2A0.64940.24661.14620.025*
C30.6906 (19)0.3639 (6)1.0365 (7)0.0193 (16)
C40.622 (2)0.3988 (6)0.9129 (7)0.0215 (16)
H4A0.70330.46030.89190.026*
C50.4312 (19)0.3397 (6)0.8237 (7)0.0175 (15)
H5A0.37560.36390.74320.021*
C60.319 (2)0.2450 (7)0.8506 (8)0.0194 (18)
C70.106 (2)0.1867 (6)0.7562 (8)0.0178 (18)
C80.006 (2)0.0807 (7)0.7828 (9)0.0220 (18)
H8A0.21940.08150.80440.026*
H8B0.16080.05590.85400.026*
C90.225 (3)0.0749 (8)0.5464 (9)0.026 (2)
C100.406 (2)0.2173 (7)0.4581 (9)0.0256 (14)
C110.458 (2)0.3240 (7)0.4400 (9)0.0256 (14)
H11A0.56700.33650.35640.038*
H11B0.24310.35740.45520.038*
H11C0.59810.34840.49660.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0275 (13)0.0247 (10)0.0279 (10)0.0019 (7)0.0075 (10)0.0060 (9)
Br10.0201 (4)0.0356 (4)0.0131 (4)0.0002 (4)0.0007 (2)0.0050 (4)
N10.013 (4)0.025 (3)0.018 (3)0.002 (2)0.001 (3)0.005 (3)
N20.025 (4)0.028 (4)0.008 (3)0.002 (3)0.002 (3)0.002 (3)
N30.033 (5)0.038 (4)0.022 (4)0.006 (3)0.006 (3)0.010 (3)
N40.025 (4)0.047 (5)0.017 (3)0.005 (3)0.009 (3)0.007 (3)
C10.024 (4)0.023 (4)0.009 (4)0.001 (3)0.003 (3)0.002 (3)
C20.020 (4)0.032 (4)0.011 (4)0.007 (3)0.001 (3)0.003 (3)
C30.015 (4)0.029 (4)0.014 (4)0.006 (3)0.004 (3)0.001 (3)
C40.022 (4)0.026 (4)0.016 (4)0.002 (3)0.003 (3)0.004 (3)
C50.017 (4)0.027 (4)0.008 (3)0.001 (3)0.002 (3)0.001 (3)
C60.023 (4)0.029 (4)0.007 (4)0.006 (3)0.003 (3)0.000 (3)
C70.026 (5)0.013 (4)0.017 (5)0.006 (3)0.009 (4)0.001 (3)
C80.027 (5)0.018 (4)0.022 (5)0.003 (3)0.009 (4)0.001 (3)
C90.025 (5)0.032 (5)0.020 (5)0.003 (3)0.005 (4)0.006 (3)
C100.015 (3)0.048 (4)0.016 (3)0.004 (3)0.007 (2)0.000 (3)
C110.015 (3)0.048 (4)0.016 (3)0.004 (3)0.007 (2)0.000 (3)
Geometric parameters (Å, º) top
S1—C91.737 (11)C2—H2A0.9300
S1—C81.813 (10)C3—C41.413 (11)
Br1—C31.892 (8)C4—C51.384 (11)
N1—C71.298 (13)C4—H4A0.9300
N1—N21.408 (11)C5—C61.395 (13)
N2—C91.342 (14)C5—H5A0.9300
N2—C101.399 (12)C6—C71.454 (12)
N3—C91.307 (13)C7—C81.519 (13)
N3—N41.417 (11)C8—H8A0.9700
N4—C101.311 (12)C8—H8B0.9700
C1—C21.391 (11)C10—C111.455 (14)
C1—C61.417 (11)C11—H11A0.9600
C1—H1A0.9300C11—H11B0.9600
C2—C31.370 (12)C11—H11C0.9600
C9—S1—C894.0 (4)C5—C6—C7120.8 (7)
C7—N1—N2115.1 (6)C1—C6—C7121.7 (8)
C9—N2—C10107.4 (8)N1—C7—C6116.3 (8)
C9—N2—N1130.2 (8)N1—C7—C8122.9 (8)
C10—N2—N1121.4 (8)C6—C7—C8120.7 (8)
C9—N3—N4106.7 (7)C7—C8—S1113.8 (7)
C10—N4—N3108.5 (7)C7—C8—H8A108.8
C2—C1—C6121.0 (8)S1—C8—H8A108.8
C2—C1—H1A119.5C7—C8—H8B108.8
C6—C1—H1A119.5S1—C8—H8B108.8
C3—C2—C1120.1 (8)H8A—C8—H8B107.7
C3—C2—H2A120.0N3—C9—N2110.2 (9)
C1—C2—H2A120.0N3—C9—S1129.0 (8)
C2—C3—C4120.5 (7)N2—C9—S1120.7 (7)
C2—C3—Br1121.8 (6)N4—C10—N2107.1 (9)
C4—C3—Br1117.7 (6)N4—C10—C11128.2 (9)
C5—C4—C3118.7 (7)N2—C10—C11124.6 (8)
C5—C4—H4A120.6C10—C11—H11A109.5
C3—C4—H4A120.6C10—C11—H11B109.5
C4—C5—C6122.2 (7)H11A—C11—H11B109.5
C4—C5—H5A118.9C10—C11—H11C109.5
C6—C5—H5A118.9H11A—C11—H11C109.5
C5—C6—C1117.4 (8)H11B—C11—H11C109.5
C7—N1—N2—C926.3 (14)C1—C6—C7—C88.3 (13)
C7—N1—N2—C10166.6 (8)N1—C7—C8—S143.3 (11)
C9—N3—N4—C101.6 (11)C6—C7—C8—S1140.3 (7)
C6—C1—C2—C30.9 (12)C9—S1—C8—C748.8 (7)
C1—C2—C3—C43.7 (12)N4—N3—C9—N20.5 (11)
C1—C2—C3—Br1178.6 (6)N4—N3—C9—S1177.5 (7)
C2—C3—C4—C54.8 (12)C10—N2—C9—N32.2 (12)
Br1—C3—C4—C5177.3 (6)N1—N2—C9—N3170.6 (9)
C3—C4—C5—C63.3 (12)C10—N2—C9—S1176.0 (7)
C4—C5—C6—C10.6 (13)N1—N2—C9—S17.5 (14)
C4—C5—C6—C7177.0 (7)C8—S1—C9—N3154.5 (10)
C2—C1—C6—C50.7 (13)C8—S1—C9—N227.7 (9)
C2—C1—C6—C7175.7 (8)N3—N4—C10—N22.8 (10)
N2—N1—C7—C6179.6 (7)N3—N4—C10—C11179.4 (9)
N2—N1—C7—C83.0 (13)C9—N2—C10—N43.1 (10)
C5—C6—C7—N17.9 (13)N1—N2—C10—N4172.8 (8)
C1—C6—C7—N1168.4 (9)C9—N2—C10—C11179.8 (9)
C5—C6—C7—C8175.5 (9)N1—N2—C10—C1110.5 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N3i0.972.563.185 (12)122
C8—H8B···N3ii0.972.313.191 (12)151
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9BrN4S
Mr309.19
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)4.0047 (10), 13.424 (3), 10.938 (3)
β (°) 99.650 (5)
V3)579.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.71
Crystal size (mm)0.46 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.281, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
5127, 2087, 1904
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.152, 1.04
No. of reflections2087
No. of parameters149
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.33, 0.86
Absolute structureFlack (1983), 950 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N3i0.972.563.185 (12)122
C8—H8B···N3ii0.972.313.191 (12)151
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160) and the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

References

First citationAbdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2007). J. Chin. Chem. Soc. 54, 1573–1582.  CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621–627.  Web of Science CrossRef CAS Google Scholar
First citationDickinson, R. G. & Jacobsen, N. W. (1975). Aust. J. Chem. 28, 2435–2446.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolla, B. S., Akberali, P. M. & Shivananda, M. K. (2001). Il Farmaco, 56, 919–927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasad, A. R., Ramalingam, T., Rao, A. B., Diwan, P. V. & Sattur, P. B. (1998). Eur. J. Med. Chem. 24, 199–201.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds