organic compounds
(E)-N′-(3-Fluorobenzylidene)-4-methylbenzohydrazide
aCollege of Chemistry and Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China
*Correspondence e-mail: liushiyong2012@yahoo.cn
In the title compound, C15H13FN2O, the dihedral angle between the benzene rings is 16.9 (2)°. The F atom and the O atom are in a syn conformation. In the crystal, molecules are linked by N—H⋯O hydrogen bonds to generate C(4) chains propagating along the b-axis direction.
Related literature
For ); Liu & Wang (2010). For the crystal structures of other similar hydrazone compounds, see: Vijayakumar et al. (2009); Xu et al. (2009); Shafiq et al. (2009).
that we have reported previously, see: Liu & You (2010Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812019484/hb6775sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812019484/hb6775Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812019484/hb6775Isup3.cml
The title compound was prepared by the condensation reaction of 3-fluorobenzaldehyde (0.05 mol, 6.2 g) and 4-methylbenzohydrazide (0.05 mol, 7.5 g) in anhydrous methanol (100 ml) at ambient temperature. Colourless blocks were obtained by slow evaporation of the solution for several days.
H2 was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H13FN2O | Dx = 1.302 Mg m−3 |
Mr = 256.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 12661 reflections |
a = 13.2629 (5) Å | θ = 2.4–26.6° |
b = 7.9118 (3) Å | µ = 0.09 mm−1 |
c = 24.9235 (8) Å | T = 298 K |
V = 2615.31 (16) Å3 | Block, colourless |
Z = 8 | 0.17 × 0.15 × 0.15 mm |
F(000) = 1072 |
Bruker SMART CCD diffractometer | 2424 independent reflections |
Radiation source: fine-focus sealed tube | 1997 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 25.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −15→16 |
Tmin = 0.984, Tmax = 0.986 | k = −9→9 |
26269 measured reflections | l = −26→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0664P)2 + 0.6653P] where P = (Fo2 + 2Fc2)/3 |
2424 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.21 e Å−3 |
C15H13FN2O | V = 2615.31 (16) Å3 |
Mr = 256.27 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.2629 (5) Å | µ = 0.09 mm−1 |
b = 7.9118 (3) Å | T = 298 K |
c = 24.9235 (8) Å | 0.17 × 0.15 × 0.15 mm |
Bruker SMART CCD diffractometer | 2424 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1997 reflections with I > 2σ(I) |
Tmin = 0.984, Tmax = 0.986 | Rint = 0.027 |
26269 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.33 e Å−3 |
2424 reflections | Δρmin = −0.21 e Å−3 |
176 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.78383 (10) | 1.16955 (17) | 0.83669 (4) | 0.0913 (4) | |
N1 | 0.77048 (10) | 0.87893 (16) | 0.65528 (5) | 0.0465 (3) | |
N2 | 0.74744 (10) | 0.79810 (16) | 0.60759 (5) | 0.0479 (3) | |
O1 | 0.63068 (8) | 0.99556 (13) | 0.58731 (4) | 0.0490 (3) | |
C1 | 0.86862 (11) | 0.87814 (19) | 0.73528 (6) | 0.0455 (4) | |
C2 | 0.81042 (12) | 0.9977 (2) | 0.76159 (6) | 0.0511 (4) | |
H2A | 0.7516 | 1.0388 | 0.7461 | 0.061* | |
C3 | 0.84119 (13) | 1.0540 (2) | 0.81085 (6) | 0.0544 (4) | |
C4 | 0.92785 (14) | 0.9988 (2) | 0.83548 (6) | 0.0575 (4) | |
H4 | 0.9470 | 1.0400 | 0.8689 | 0.069* | |
C5 | 0.98513 (14) | 0.8808 (2) | 0.80907 (7) | 0.0614 (5) | |
H5 | 1.0444 | 0.8418 | 0.8246 | 0.074* | |
C6 | 0.95580 (13) | 0.8195 (2) | 0.75978 (6) | 0.0568 (4) | |
H6 | 0.9948 | 0.7379 | 0.7427 | 0.068* | |
C7 | 0.83918 (12) | 0.8096 (2) | 0.68307 (6) | 0.0486 (4) | |
H7 | 0.8713 | 0.7136 | 0.6700 | 0.058* | |
C8 | 0.67452 (11) | 0.86358 (18) | 0.57603 (5) | 0.0406 (3) | |
C9 | 0.64991 (11) | 0.76616 (18) | 0.52671 (5) | 0.0413 (3) | |
C10 | 0.55246 (12) | 0.7776 (2) | 0.50671 (6) | 0.0528 (4) | |
H10 | 0.5052 | 0.8451 | 0.5241 | 0.063* | |
C11 | 0.52533 (14) | 0.6893 (2) | 0.46127 (7) | 0.0610 (5) | |
H11 | 0.4594 | 0.6969 | 0.4488 | 0.073* | |
C12 | 0.59315 (13) | 0.5906 (2) | 0.43399 (6) | 0.0540 (4) | |
C13 | 0.69117 (13) | 0.5831 (2) | 0.45316 (6) | 0.0547 (4) | |
H13 | 0.7389 | 0.5193 | 0.4348 | 0.066* | |
C14 | 0.71912 (12) | 0.6688 (2) | 0.49895 (6) | 0.0499 (4) | |
H14 | 0.7851 | 0.6610 | 0.5113 | 0.060* | |
C15 | 0.56269 (19) | 0.4938 (3) | 0.38453 (8) | 0.0806 (6) | |
H15A | 0.4905 | 0.4864 | 0.3829 | 0.121* | |
H15B | 0.5908 | 0.3821 | 0.3860 | 0.121* | |
H15C | 0.5873 | 0.5512 | 0.3532 | 0.121* | |
H2 | 0.7769 (14) | 0.6969 (16) | 0.6020 (8) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.1050 (10) | 0.0996 (9) | 0.0693 (7) | 0.0196 (8) | −0.0026 (6) | −0.0352 (7) |
N1 | 0.0550 (8) | 0.0461 (7) | 0.0383 (6) | −0.0006 (6) | −0.0032 (5) | −0.0095 (6) |
N2 | 0.0587 (8) | 0.0447 (7) | 0.0404 (7) | 0.0068 (6) | −0.0079 (6) | −0.0115 (5) |
O1 | 0.0539 (6) | 0.0436 (6) | 0.0495 (6) | 0.0052 (5) | 0.0031 (5) | −0.0070 (5) |
C1 | 0.0524 (8) | 0.0445 (8) | 0.0398 (8) | −0.0040 (7) | −0.0021 (6) | −0.0010 (6) |
C2 | 0.0546 (9) | 0.0536 (9) | 0.0452 (9) | 0.0010 (7) | −0.0062 (7) | −0.0052 (7) |
C3 | 0.0666 (10) | 0.0526 (9) | 0.0439 (8) | −0.0038 (8) | 0.0036 (7) | −0.0089 (7) |
C4 | 0.0739 (11) | 0.0597 (10) | 0.0390 (8) | −0.0164 (9) | −0.0092 (8) | 0.0003 (7) |
C5 | 0.0638 (10) | 0.0673 (11) | 0.0532 (9) | −0.0023 (9) | −0.0163 (8) | 0.0061 (9) |
C6 | 0.0613 (10) | 0.0582 (10) | 0.0509 (9) | 0.0069 (8) | −0.0062 (8) | −0.0037 (8) |
C7 | 0.0562 (9) | 0.0468 (8) | 0.0427 (8) | 0.0036 (7) | −0.0028 (7) | −0.0070 (7) |
C8 | 0.0447 (8) | 0.0385 (7) | 0.0385 (7) | −0.0020 (6) | 0.0045 (6) | −0.0009 (6) |
C9 | 0.0489 (8) | 0.0374 (7) | 0.0378 (7) | 0.0004 (6) | −0.0020 (6) | 0.0013 (6) |
C10 | 0.0514 (9) | 0.0525 (9) | 0.0545 (9) | 0.0080 (7) | −0.0060 (7) | −0.0057 (7) |
C11 | 0.0565 (10) | 0.0663 (11) | 0.0602 (10) | 0.0056 (8) | −0.0186 (8) | −0.0059 (9) |
C12 | 0.0715 (10) | 0.0489 (9) | 0.0415 (8) | 0.0001 (8) | −0.0133 (7) | −0.0010 (7) |
C13 | 0.0673 (10) | 0.0565 (10) | 0.0402 (8) | 0.0120 (8) | −0.0040 (7) | −0.0082 (7) |
C14 | 0.0514 (9) | 0.0580 (9) | 0.0402 (8) | 0.0087 (7) | −0.0062 (6) | −0.0056 (7) |
C15 | 0.1006 (16) | 0.0834 (14) | 0.0579 (11) | −0.0013 (12) | −0.0259 (11) | −0.0184 (10) |
F1—C3 | 1.352 (2) | C7—H7 | 0.9300 |
N1—C7 | 1.269 (2) | C8—C9 | 1.487 (2) |
N1—N2 | 1.3841 (16) | C9—C14 | 1.384 (2) |
N2—C8 | 1.3498 (19) | C9—C10 | 1.388 (2) |
N2—H2 | 0.902 (9) | C10—C11 | 1.378 (2) |
O1—C8 | 1.2278 (17) | C10—H10 | 0.9300 |
C1—C2 | 1.386 (2) | C11—C12 | 1.372 (2) |
C1—C6 | 1.388 (2) | C11—H11 | 0.9300 |
C1—C7 | 1.463 (2) | C12—C13 | 1.386 (2) |
C2—C3 | 1.368 (2) | C12—C15 | 1.506 (2) |
C2—H2A | 0.9300 | C13—C14 | 1.378 (2) |
C3—C4 | 1.374 (3) | C13—H13 | 0.9300 |
C4—C5 | 1.372 (3) | C14—H14 | 0.9300 |
C4—H4 | 0.9300 | C15—H15A | 0.9600 |
C5—C6 | 1.377 (2) | C15—H15B | 0.9600 |
C5—H5 | 0.9300 | C15—H15C | 0.9600 |
C6—H6 | 0.9300 | ||
C7—N1—N2 | 115.30 (13) | O1—C8—C9 | 121.74 (13) |
C8—N2—N1 | 118.77 (12) | N2—C8—C9 | 116.10 (12) |
C8—N2—H2 | 124.2 (13) | C14—C9—C10 | 118.31 (14) |
N1—N2—H2 | 116.6 (13) | C14—C9—C8 | 123.80 (13) |
C2—C1—C6 | 118.96 (14) | C10—C9—C8 | 117.87 (13) |
C2—C1—C7 | 121.69 (14) | C11—C10—C9 | 120.35 (15) |
C6—C1—C7 | 119.33 (14) | C11—C10—H10 | 119.8 |
C3—C2—C1 | 118.74 (15) | C9—C10—H10 | 119.8 |
C3—C2—H2A | 120.6 | C12—C11—C10 | 121.65 (16) |
C1—C2—H2A | 120.6 | C12—C11—H11 | 119.2 |
F1—C3—C2 | 118.67 (16) | C10—C11—H11 | 119.2 |
F1—C3—C4 | 118.20 (15) | C11—C12—C13 | 117.91 (15) |
C2—C3—C4 | 123.13 (16) | C11—C12—C15 | 121.29 (16) |
C5—C4—C3 | 117.72 (15) | C13—C12—C15 | 120.80 (17) |
C5—C4—H4 | 121.1 | C14—C13—C12 | 121.13 (15) |
C3—C4—H4 | 121.1 | C14—C13—H13 | 119.4 |
C4—C5—C6 | 120.76 (16) | C12—C13—H13 | 119.4 |
C4—C5—H5 | 119.6 | C13—C14—C9 | 120.62 (14) |
C6—C5—H5 | 119.6 | C13—C14—H14 | 119.7 |
C5—C6—C1 | 120.67 (16) | C9—C14—H14 | 119.7 |
C5—C6—H6 | 119.7 | C12—C15—H15A | 109.5 |
C1—C6—H6 | 119.7 | C12—C15—H15B | 109.5 |
N1—C7—C1 | 121.10 (15) | H15A—C15—H15B | 109.5 |
N1—C7—H7 | 119.4 | C12—C15—H15C | 109.5 |
C1—C7—H7 | 119.4 | H15A—C15—H15C | 109.5 |
O1—C8—N2 | 122.16 (13) | H15B—C15—H15C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.90 (1) | 2.04 (1) | 2.9322 (17) | 169 (2) |
Symmetry code: (i) −x+3/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C15H13FN2O |
Mr | 256.27 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 13.2629 (5), 7.9118 (3), 24.9235 (8) |
V (Å3) | 2615.31 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.17 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.984, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26269, 2424, 1997 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.123, 1.04 |
No. of reflections | 2424 |
No. of parameters | 176 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.21 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.902 (9) | 2.043 (10) | 2.9322 (17) | 168.5 (19) |
Symmetry code: (i) −x+3/2, y−1/2, z. |
Acknowledgements
The authors acknowledge the Zhejiang Provincial Natural Science Foundation of China (project No. Y12B020017).
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Liu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1652. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vijayakumar, S., Adhikari, A., Kalluraya, B. & Chandrasekharan, K. (2009). Opt. Mater. 31, 1564–1569. Web of Science CrossRef CAS Google Scholar
Xu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structures of hydrazones are of ongoing interest (Vijayakumar et al., 2009). As a continuation of our work on similar compounds (Liu & You, 2010; Liu & Wang, 2010), we report herein the crystal structure of the title compound a new hydrazone.
The molecular structure of the title compound is shown in Fig. 1. The two benzene ring system are inclined at a dihedral angle of 16.9 (2)°. All the bond lengths are comparable to those observed in related structures (Xu et al., 2009; Shafiq et al., 2009) and those we reported previously.
In the crystal structure, molecules are linked through N–H···O hydrogen bonds, to form one-dimensional chains running along the b axis (Fig. 2 and Table 1).