organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(Anthracen-9-yl­methyl­­idene)hydrazinyl­­idene]-3-chloro-1-methyl-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Government College University, Faisalabad, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan, and dForman Christian College (A Chartered University), Ferozepur Road, Lahore-54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 May 2012; accepted 13 May 2012; online 19 May 2012)

In the title compound, C24H18ClN3O2S, the dihedral angle between the benzene ring and the anthracene ring system is 41.10 (8)°. The thia­zine ring has a half-chair conformation and the Cl atom is in an axial orientation. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, generating C(8) chains along [100]. A C—H⋯N short contact occurs in the mol­ecule, generating an S(6) ring.

Related literature

For a related structure and references to further synthetic details, see: Shafiq et al. (2012[Shafiq, M., Tahir, M. N., Khan, I. U. & Ahmad, S. (2012). Acta Cryst. E68, o1787.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18ClN3O2S

  • Mr = 447.92

  • Monoclinic, P 21 /c

  • a = 8.5133 (4) Å

  • b = 19.8999 (8) Å

  • c = 12.7849 (6) Å

  • β = 105.026 (2)°

  • V = 2091.88 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.960

  • 16154 measured reflections

  • 3788 independent reflections

  • 2827 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.04

  • 3788 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.59 3.370 (4) 142
C22—H22⋯N3 0.93 2.29 2.913 (4) 123
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As part of our ongoing studies of thiazine derivatives (Shafiq et al., 2012), we now describe the structure of the title compound, (I), (Fig. 1).

In (I), the benzene ring A (C1—C6) and anthracene group B (C10—C23) are almost planar with r. m. s. deviation of 0.0090 and 0.0144 Å, respectively. The dihedral angle between A/B is 41.10 (8)°. The central group C (N2/N3/C9) is of course planar. The dihedral angle between A/C and B/C is 13.63 (26) and 27.48 (26)°, respectively. The thiazine ring D (C1/C6/C7/C8/S1/N1) is in the half-chair form, with the maximum puckering amplitude (Cremer & Pople, 1975), Q = 0.578 (2) Å. There exist S(6) ring motif (Bernstein et al., 1995) due to H-bonding of C—H···N type (Table 1, Fig. 1). The molecules form C(8) chains extending along the a-axis due to H-bonding of C—H···O type (Table 1, Fig. 2).

Related literature top

For a related structure and references to further synthetic details, see: Shafiq et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Schiff base derivative of (4Z)-4-hydrazinylidene-1-methyl-3,4-dihydro -1H-2,1-benzothiazine 2,2-dioxide and anthracene-9-carbaldehyde was prepared using the method reported previously (Shafiq et al. 2012). The chlorination of the schiff base was undertaken using N-chloro succinimide and dibenzoylperoxide (Shafiq et al., 2012). The crude product of (I) was re-crystallized in ethyl acetate to get orange prisms.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line indicates the intra-molecular short contact.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form one-dimensional polymeric chains extending along the [100] direction.
4-[2-(Anthracen-9-ylmethylidene)hydrazinylidene]-3-chloro-1-methyl- 3,4-dihydro-1H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C24H18ClN3O2SF(000) = 928
Mr = 447.92Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2827 reflections
a = 8.5133 (4) Åθ = 2.1–25.3°
b = 19.8999 (8) ŵ = 0.31 mm1
c = 12.7849 (6) ÅT = 296 K
β = 105.026 (2)°Prism, orange
V = 2091.88 (16) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3788 independent reflections
Radiation source: fine-focus sealed tube2827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.1°
ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2318
Tmin = 0.930, Tmax = 0.960l = 1515
16154 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.8876P]
where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C24H18ClN3O2SV = 2091.88 (16) Å3
Mr = 447.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5133 (4) ŵ = 0.31 mm1
b = 19.8999 (8) ÅT = 296 K
c = 12.7849 (6) Å0.26 × 0.22 × 0.20 mm
β = 105.026 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3788 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2827 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.960Rint = 0.031
16154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
3788 reflectionsΔρmin = 0.35 e Å3
281 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31773 (12)0.02405 (4)0.89027 (7)0.0772 (3)
S10.47338 (9)0.15552 (4)0.89884 (6)0.0561 (3)
O10.6215 (3)0.12587 (13)0.95945 (17)0.0790 (8)
O20.4770 (2)0.20988 (10)0.82508 (16)0.0625 (7)
N10.3657 (3)0.17603 (12)0.98246 (17)0.0581 (8)
N20.1106 (3)0.12240 (10)0.66521 (16)0.0470 (7)
N30.1929 (3)0.07899 (11)0.61082 (16)0.0520 (8)
C10.1136 (3)0.17431 (11)0.8339 (2)0.0436 (8)
C20.0466 (3)0.19551 (13)0.7960 (2)0.0533 (9)
C30.1214 (4)0.23414 (14)0.8580 (3)0.0632 (11)
C40.0340 (4)0.25376 (14)0.9606 (3)0.0665 (13)
C50.1253 (4)0.23567 (14)0.9993 (2)0.0596 (10)
C60.2010 (4)0.19540 (13)0.9382 (2)0.0498 (9)
C70.3445 (3)0.09596 (13)0.8164 (2)0.0485 (8)
C80.1851 (3)0.13033 (12)0.76582 (18)0.0414 (8)
C90.1181 (3)0.07213 (12)0.51179 (19)0.0456 (8)
C100.1765 (3)0.03012 (12)0.43534 (19)0.0430 (8)
C110.1245 (3)0.04805 (12)0.32402 (19)0.0456 (8)
C120.0261 (4)0.10529 (14)0.2848 (2)0.0619 (10)
C130.0196 (4)0.12103 (16)0.1775 (2)0.0676 (10)
C140.0306 (4)0.08209 (16)0.1014 (2)0.0667 (10)
C150.1244 (4)0.02818 (15)0.1340 (2)0.0603 (10)
C160.1755 (3)0.00887 (13)0.2453 (2)0.0473 (8)
C170.2714 (3)0.04692 (13)0.2787 (2)0.0534 (10)
C180.3237 (3)0.06616 (12)0.3865 (2)0.0490 (9)
C190.4221 (4)0.12438 (15)0.4175 (3)0.0641 (11)
C200.4705 (4)0.14389 (16)0.5208 (3)0.0742 (13)
C210.4206 (4)0.10726 (15)0.6017 (3)0.0723 (11)
C220.3269 (4)0.05134 (14)0.5762 (2)0.0596 (10)
C230.2760 (3)0.02744 (12)0.4675 (2)0.0447 (8)
C240.4352 (5)0.1704 (2)1.0998 (2)0.0851 (15)
H20.104840.183180.726620.0639*
H30.229480.246980.831440.0757*
H40.084170.279451.003390.0798*
H50.183720.250481.067250.0716*
H70.393780.082150.758510.0582*
H90.020560.095090.486130.0547*
H120.007910.132590.333830.0744*
H130.085170.158360.154570.0813*
H140.001060.093510.028360.0801*
H150.157410.002530.082710.0725*
H170.302310.072760.226790.0640*
H190.453360.149290.364690.0764*
H200.536790.181450.539620.0887*
H210.452410.121740.673230.0865*
H220.295460.028230.630700.0713*
H24A0.467190.214061.129590.1277*
H24B0.528450.141381.114010.1277*
H24C0.355250.151941.132680.1277*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1028 (7)0.0585 (5)0.0677 (5)0.0011 (4)0.0176 (5)0.0132 (4)
S10.0554 (4)0.0686 (5)0.0428 (4)0.0061 (3)0.0100 (3)0.0092 (3)
O10.0610 (13)0.1054 (17)0.0592 (13)0.0087 (12)0.0049 (10)0.0130 (12)
O20.0646 (13)0.0666 (12)0.0617 (12)0.0183 (10)0.0263 (10)0.0031 (10)
N10.0694 (16)0.0683 (15)0.0333 (12)0.0026 (12)0.0076 (11)0.0079 (11)
N20.0551 (13)0.0515 (12)0.0352 (11)0.0019 (10)0.0131 (10)0.0046 (9)
N30.0600 (14)0.0615 (13)0.0347 (12)0.0041 (11)0.0127 (10)0.0103 (10)
C10.0547 (16)0.0401 (13)0.0410 (14)0.0090 (11)0.0215 (12)0.0026 (11)
C20.0561 (17)0.0506 (15)0.0574 (17)0.0084 (13)0.0225 (14)0.0053 (13)
C30.0625 (19)0.0526 (16)0.085 (2)0.0038 (14)0.0378 (17)0.0041 (16)
C40.095 (3)0.0477 (16)0.075 (2)0.0053 (16)0.055 (2)0.0096 (15)
C50.091 (2)0.0487 (16)0.0480 (16)0.0079 (15)0.0339 (16)0.0090 (13)
C60.0706 (19)0.0436 (14)0.0406 (14)0.0100 (13)0.0239 (13)0.0041 (11)
C70.0562 (16)0.0547 (15)0.0354 (13)0.0003 (12)0.0132 (12)0.0057 (11)
C80.0504 (15)0.0433 (13)0.0330 (13)0.0080 (11)0.0152 (11)0.0037 (10)
C90.0561 (16)0.0464 (14)0.0343 (13)0.0019 (12)0.0120 (12)0.0022 (11)
C100.0514 (15)0.0441 (13)0.0337 (13)0.0074 (11)0.0114 (11)0.0054 (10)
C110.0569 (16)0.0455 (14)0.0335 (13)0.0095 (12)0.0103 (11)0.0059 (11)
C120.089 (2)0.0559 (16)0.0392 (15)0.0073 (15)0.0136 (14)0.0011 (13)
C130.094 (2)0.0603 (17)0.0434 (16)0.0009 (16)0.0084 (16)0.0050 (14)
C140.096 (2)0.0651 (19)0.0341 (15)0.0196 (18)0.0083 (15)0.0018 (14)
C150.083 (2)0.0653 (18)0.0354 (14)0.0200 (16)0.0202 (14)0.0123 (13)
C160.0590 (16)0.0473 (14)0.0371 (13)0.0133 (12)0.0154 (12)0.0083 (11)
C170.0653 (18)0.0554 (16)0.0461 (16)0.0120 (14)0.0265 (13)0.0138 (13)
C180.0510 (16)0.0436 (14)0.0555 (17)0.0076 (12)0.0192 (13)0.0077 (12)
C190.072 (2)0.0532 (16)0.073 (2)0.0051 (15)0.0296 (17)0.0012 (15)
C200.078 (2)0.0541 (18)0.090 (3)0.0105 (16)0.0211 (19)0.0066 (17)
C210.089 (2)0.0621 (19)0.0595 (19)0.0060 (17)0.0081 (17)0.0120 (15)
C220.077 (2)0.0533 (16)0.0454 (16)0.0013 (14)0.0103 (14)0.0003 (13)
C230.0504 (15)0.0436 (13)0.0386 (13)0.0086 (11)0.0086 (11)0.0028 (11)
C240.092 (3)0.124 (3)0.0344 (16)0.008 (2)0.0078 (16)0.0069 (18)
Geometric parameters (Å, º) top
Cl1—C71.762 (3)C16—C171.379 (4)
S1—O11.426 (3)C17—C181.388 (3)
S1—O21.441 (2)C18—C191.424 (4)
S1—N11.630 (3)C18—C231.432 (4)
S1—C71.766 (3)C19—C201.335 (5)
N1—C61.423 (4)C20—C211.418 (5)
N1—C241.467 (3)C21—C221.359 (4)
N2—N31.405 (3)C22—C231.426 (4)
N2—C81.288 (3)C2—H20.9300
N3—C91.269 (3)C3—H30.9300
C1—C21.389 (4)C4—H40.9300
C1—C61.412 (4)C5—H50.9300
C1—C81.473 (3)C7—H70.9800
C2—C31.374 (4)C9—H90.9300
C3—C41.386 (5)C12—H120.9300
C4—C51.366 (5)C13—H130.9300
C5—C61.389 (4)C14—H140.9300
C7—C81.508 (4)C15—H150.9300
C9—C101.467 (3)C17—H170.9300
C10—C111.422 (3)C19—H190.9300
C10—C231.421 (3)C20—H200.9300
C11—C121.426 (4)C21—H210.9300
C11—C161.427 (4)C22—H220.9300
C12—C131.362 (4)C24—H24A0.9600
C13—C141.395 (4)C24—H24B0.9600
C14—C151.338 (4)C24—H24C0.9600
C15—C161.429 (4)
O1—S1—O2120.04 (14)C18—C19—C20121.3 (3)
O1—S1—N1108.40 (13)C19—C20—C21119.9 (3)
O1—S1—C7111.82 (14)C20—C21—C22121.0 (3)
O2—S1—N1110.63 (12)C21—C22—C23121.2 (3)
O2—S1—C7103.22 (12)C10—C23—C18119.0 (2)
N1—S1—C7101.03 (13)C10—C23—C22124.0 (2)
S1—N1—C6118.09 (17)C18—C23—C22117.0 (2)
S1—N1—C24120.3 (2)C1—C2—H2119.00
C6—N1—C24121.5 (3)C3—C2—H2119.00
N3—N2—C8113.0 (2)C2—C3—H3120.00
N2—N3—C9112.0 (2)C4—C3—H3120.00
C2—C1—C6117.9 (2)C3—C4—H4120.00
C2—C1—C8119.6 (2)C5—C4—H4120.00
C6—C1—C8122.5 (2)C4—C5—H5120.00
C1—C2—C3121.9 (3)C6—C5—H5120.00
C2—C3—C4119.2 (3)Cl1—C7—H7109.00
C3—C4—C5120.5 (3)S1—C7—H7109.00
C4—C5—C6120.7 (3)C8—C7—H7108.00
N1—C6—C1121.3 (2)N3—C9—H9118.00
N1—C6—C5119.1 (2)C10—C9—H9118.00
C1—C6—C5119.7 (3)C11—C12—H12119.00
Cl1—C7—S1111.83 (14)C13—C12—H12119.00
Cl1—C7—C8111.80 (18)C12—C13—H13120.00
S1—C7—C8107.60 (17)C14—C13—H13119.00
N2—C8—C1119.4 (2)C13—C14—H14120.00
N2—C8—C7121.9 (2)C15—C14—H14120.00
C1—C8—C7118.7 (2)C14—C15—H15119.00
N3—C9—C10123.9 (2)C16—C15—H15119.00
C9—C10—C11116.9 (2)C16—C17—H17119.00
C9—C10—C23123.1 (2)C18—C17—H17119.00
C11—C10—C23120.0 (2)C18—C19—H19119.00
C10—C11—C12123.7 (2)C20—C19—H19119.00
C10—C11—C16119.7 (2)C19—C20—H20120.00
C12—C11—C16116.6 (2)C21—C20—H20120.00
C11—C12—C13121.8 (3)C20—C21—H21119.00
C12—C13—C14121.1 (3)C22—C21—H21120.00
C13—C14—C15119.6 (2)C21—C22—H22119.00
C14—C15—C16121.9 (3)C23—C22—H22119.00
C11—C16—C15119.1 (2)N1—C24—H24A110.00
C11—C16—C17119.1 (2)N1—C24—H24B110.00
C15—C16—C17121.9 (2)N1—C24—H24C109.00
C16—C17—C18122.8 (2)H24A—C24—H24B110.00
C17—C18—C19121.0 (3)H24A—C24—H24C109.00
C17—C18—C23119.5 (2)H24B—C24—H24C109.00
C19—C18—C23119.6 (2)
O1—S1—N1—C6169.0 (2)S1—C7—C8—C143.3 (3)
O1—S1—N1—C247.3 (3)N3—C9—C10—C11154.0 (3)
O2—S1—N1—C657.5 (2)N3—C9—C10—C2328.1 (4)
O2—S1—N1—C24126.2 (2)C9—C10—C11—C122.7 (4)
C7—S1—N1—C651.3 (2)C9—C10—C11—C16179.4 (2)
C7—S1—N1—C24125.0 (3)C23—C10—C11—C12179.3 (3)
O1—S1—C7—Cl150.62 (19)C23—C10—C11—C161.3 (4)
O1—S1—C7—C8173.77 (17)C9—C10—C23—C18178.5 (2)
O2—S1—C7—Cl1178.99 (14)C9—C10—C23—C221.3 (4)
O2—S1—C7—C855.85 (19)C11—C10—C23—C180.7 (4)
N1—S1—C7—Cl164.50 (17)C11—C10—C23—C22176.6 (3)
N1—S1—C7—C858.64 (19)C10—C11—C12—C13179.3 (3)
S1—N1—C6—C123.8 (3)C16—C11—C12—C131.3 (4)
S1—N1—C6—C5156.4 (2)C10—C11—C16—C15179.0 (3)
C24—N1—C6—C1152.4 (3)C10—C11—C16—C171.6 (4)
C24—N1—C6—C527.4 (4)C12—C11—C16—C150.9 (4)
C8—N2—N3—C9179.6 (2)C12—C11—C16—C17179.8 (3)
N3—N2—C8—C1179.8 (2)C11—C12—C13—C141.0 (5)
N3—N2—C8—C70.4 (3)C12—C13—C14—C150.4 (5)
N2—N3—C9—C10179.6 (2)C13—C14—C15—C160.0 (5)
C6—C1—C2—C31.9 (4)C14—C15—C16—C110.3 (5)
C8—C1—C2—C3177.1 (2)C14—C15—C16—C17179.6 (3)
C2—C1—C6—N1179.7 (2)C11—C16—C17—C181.3 (4)
C2—C1—C6—C50.5 (4)C15—C16—C17—C18179.3 (3)
C8—C1—C6—N11.3 (4)C16—C17—C18—C19179.7 (3)
C8—C1—C6—C5178.6 (2)C16—C17—C18—C230.6 (4)
C2—C1—C8—N213.1 (4)C17—C18—C19—C20178.8 (3)
C2—C1—C8—C7167.1 (2)C23—C18—C19—C200.3 (5)
C6—C1—C8—N2167.9 (2)C17—C18—C23—C100.3 (4)
C6—C1—C8—C711.9 (4)C17—C18—C23—C22177.1 (3)
C1—C2—C3—C41.3 (4)C19—C18—C23—C10179.4 (3)
C2—C3—C4—C50.8 (5)C19—C18—C23—C222.0 (4)
C3—C4—C5—C62.2 (5)C18—C19—C20—C211.5 (5)
C4—C5—C6—N1178.2 (3)C19—C20—C21—C221.6 (5)
C4—C5—C6—C11.6 (4)C20—C21—C22—C230.2 (5)
Cl1—C7—C8—N2100.3 (3)C21—C22—C23—C10179.2 (3)
Cl1—C7—C8—C179.9 (2)C21—C22—C23—C181.9 (4)
S1—C7—C8—N2136.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.593.370 (4)142
C22—H22···N30.932.292.913 (4)123
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H18ClN3O2S
Mr447.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.5133 (4), 19.8999 (8), 12.7849 (6)
β (°) 105.026 (2)
V3)2091.88 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.930, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
16154, 3788, 2827
Rint0.031
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.04
No. of reflections3788
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.593.370 (4)142
C22—H22···N30.932.292.913 (4)123
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U. & Ahmad, S. (2012). Acta Cryst. E68, o1787.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds