organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Cyano-N′-(1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene)acetohydrazide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Therapeutic Chemistry, Pharmaceutical and Drug Industries Division, National Research Centre, Dokki 12622, Cairo, Egypt, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 May 2012; accepted 9 May 2012; online 16 May 2012)

In the title compound, C13H13N3O, the tetra­hydro­benzene ring adopts a half-boat (envelope) conformation. The mean plane of the tetra­hydro­naphthalene ring system forms a dihedral angle of 9.56 (6)° with the mean plane of the cyano­acetohydrazide group. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are connected by C—H⋯N hydrogen bonds into a chain propagating along [101]. The crystal packing also features C—H⋯π inter­actions.

Related literature

For background to tetra­lin, see: Dutta et al. (2002[Dutta, A. K., Fei, X.-S. & Reith, M. E. A. (2002). Bioorg. Med. Chem. Lett. 12, 619-622.]); Taddei et al. (2002[Taddei, P., Torreggiani, A. & Fini, G. (2002). Biopolymers, 67, 289-293.]); Zaghary et al. (2005[Zaghary, W. A., Heiba, M. E., Anwar, M. M. & Hassan, S. A. (2005). Egypt. Pharm. J. (NRC), 4, 145-149.]); Bahgat & Khalifa (2006[Bahgat, M. M. & Khalifa, N. M. (2006). Acta Pol. Pharm. 63, 181-188.]); El Nezhawy et al. (2009[El Nezhawy, A. O. H., Ramla, M. M., Khalifa, N. M. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 531-539.]); Khalifa et al. (2008[Khalifa, N. M., Ramla, M. M., Amr, A. E.-G. E. & Abdulla, M. M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 3046-3062.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3O

  • Mr = 227.26

  • Triclinic, [P \overline 1]

  • a = 7.6414 (1) Å

  • b = 7.6748 (1) Å

  • c = 10.5644 (2) Å

  • α = 109.589 (1)°

  • β = 91.405 (1)°

  • γ = 93.260 (1)°

  • V = 582.13 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 296 K

  • 0.59 × 0.51 × 0.40 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.687, Tmax = 0.771

  • 5749 measured reflections

  • 1898 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.05

  • 1898 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.91 (2) 1.96 (2) 2.8640 (17) 174.7 (19)
C10—H10A⋯N3ii 0.93 2.58 3.491 (3) 167
C2—H2ACg1iii 0.97 2.80 3.6775 (17) 152
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z-1; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetralins (tetrahydronaphthalene derivatives) are of increasing interest since many of these compounds play a vital role in the biological activities because of their biological potentialities, for example, as potent agonists for D2-type receptors (Dutta et al., 2002), a treatment of Alzheimer's disease (Taddei et al., 2002) and as anti-cancer agents (Zaghary et al., 2005). Also, we found that certain substituted tetralin and heterocyclic derivatives show inhibition for cercarial serine protease (Bahgat & Khalifa, 2006), antioxidant (El Nezhawy et al., 2009) and antiinflammatory (Khalifa et al., 2008) activities. Tetralin derivative containing cyanoaceto-hydrazide was prepared as the title compound and its crystal structure is now reported.

The asymmetric unit of the title compound is shown in Fig. 1. The tetrahydrobenzene ring (C1–C6) adopts a half-boat conformation with puckering parameters (Cremer & Pople, 1975), Q = 0.4695 (16) Å, θ = 122.4 (2)° and ϕ = 308.6 (2)°. The flap atom C3 deviates from the mean plane of C1/C2/C4–C6 by -0.6395 (16) Å. In the molecule, the mean plane of tetrahydronaphthalene ring system (C1–C10) forms a dihedral angle of 9.56 (6)° with the mean plane of cyanoacetohydrazide group [O1/N1–N3/C11–C13; maximum deviation = 0.045 (2) Å at atom C12].

In the crystal (Fig. 2), molecules are linked by a pair of N1—H1N1···O1 hydrogen bonds into an inversion dimer with an R22(8) ring motif. The dimers are further connected by C10—H10A···N3 hydrogen bonds into an infinite chain along [101]. The crystal packing also features C—H···π interaction (Table 1), involving Cg1 which is the centroid of C5–C10 ring.

Related literature top

For background to tetralin, see: Dutta et al. (2002); Taddei et al. (2002); Zaghary et al. (2005); Bahgat & Khalifa (2006); El Nezhawy et al. (2009); Khalifa et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

Equimolar amounts (0.01 mol) of tetralone and 2-cyanoacetohydrazide in dioxane (30 ml) were heated under reflux for 6 h. The mixture was then cooled at room temperature for overnight. The precipitated solid was filtered off, washed with ethanol, dried and crystallized from methanol to afford the title compound as colourless blocks with 73% abundance, m.p.: 183–185 °C.

Refinement top

The atom H1N1 was located in a difference fourier map and refined freely [N1—H1N1 = 0.90 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 and 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-2-Cyano-N'-(1,2,3,4-tetrahydronaphthalen-1- ylidene)acetohydrazide top
Crystal data top
C13H13N3OZ = 2
Mr = 227.26F(000) = 240
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.6414 (1) ÅCell parameters from 2725 reflections
b = 7.6748 (1) Åθ = 5.8–70.2°
c = 10.5644 (2) ŵ = 0.69 mm1
α = 109.589 (1)°T = 296 K
β = 91.405 (1)°Block, colourless
γ = 93.260 (1)°0.59 × 0.51 × 0.40 mm
V = 582.13 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
1898 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 65.0°, θmin = 5.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.687, Tmax = 0.771k = 79
5749 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.0904P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1898 reflectionsΔρmax = 0.18 e Å3
159 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (3)
Crystal data top
C13H13N3Oγ = 93.260 (1)°
Mr = 227.26V = 582.13 (2) Å3
Triclinic, P1Z = 2
a = 7.6414 (1) ÅCu Kα radiation
b = 7.6748 (1) ŵ = 0.69 mm1
c = 10.5644 (2) ÅT = 296 K
α = 109.589 (1)°0.59 × 0.51 × 0.40 mm
β = 91.405 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1762 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.771Rint = 0.017
5749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
1898 reflectionsΔρmin = 0.17 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19129 (16)0.4167 (2)0.53245 (10)0.0798 (4)
N10.07938 (15)0.36666 (18)0.32370 (11)0.0530 (3)
N20.10531 (14)0.29801 (15)0.18782 (10)0.0456 (3)
N30.5764 (3)0.2338 (4)0.5360 (2)0.1264 (9)
C10.02329 (16)0.29510 (17)0.10641 (13)0.0419 (3)
C20.20191 (18)0.3606 (2)0.14809 (15)0.0531 (4)
H2A0.19540.49500.17880.064*
H2B0.23570.32180.22300.064*
C30.34209 (18)0.2862 (2)0.03515 (16)0.0590 (4)
H3A0.36650.15440.01680.071*
H3B0.44940.34700.06320.071*
C40.28501 (19)0.3183 (2)0.09133 (16)0.0583 (4)
H4A0.27420.45040.07590.070*
H4B0.37380.26210.16290.070*
C50.11171 (18)0.23730 (19)0.13436 (14)0.0491 (4)
C60.01244 (16)0.22607 (16)0.03809 (12)0.0416 (3)
C70.17256 (17)0.15242 (19)0.08101 (14)0.0478 (3)
H7A0.25550.14410.01770.057*
C80.2098 (2)0.0923 (2)0.21424 (15)0.0575 (4)
H8A0.31700.04380.24070.069*
C90.0876 (2)0.1038 (2)0.30948 (15)0.0636 (4)
H9A0.11220.06290.40010.076*
C100.0706 (2)0.1761 (2)0.26907 (15)0.0613 (4)
H10A0.15200.18420.33340.074*
C110.20438 (19)0.3556 (2)0.41121 (14)0.0547 (4)
C120.3655 (2)0.2592 (2)0.35112 (15)0.0619 (4)
H12A0.33040.13610.28920.074*
H12B0.42510.32840.30110.074*
C130.4837 (2)0.2454 (3)0.45556 (17)0.0712 (5)
H1N10.010 (3)0.434 (3)0.3642 (19)0.078 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0795 (8)0.1259 (11)0.0388 (6)0.0515 (7)0.0104 (5)0.0263 (6)
N10.0473 (7)0.0739 (8)0.0390 (6)0.0203 (6)0.0055 (5)0.0178 (5)
N20.0432 (6)0.0558 (7)0.0378 (6)0.0092 (5)0.0022 (4)0.0148 (5)
N30.0968 (14)0.189 (2)0.0923 (14)0.0546 (15)0.0274 (11)0.0414 (14)
C10.0377 (7)0.0438 (7)0.0456 (7)0.0036 (5)0.0000 (5)0.0167 (5)
C20.0420 (7)0.0643 (9)0.0538 (8)0.0104 (6)0.0054 (6)0.0195 (7)
C30.0374 (7)0.0665 (9)0.0744 (10)0.0053 (6)0.0015 (6)0.0255 (8)
C40.0441 (8)0.0667 (9)0.0653 (9)0.0060 (6)0.0122 (6)0.0245 (7)
C50.0452 (7)0.0495 (7)0.0512 (8)0.0002 (6)0.0089 (6)0.0164 (6)
C60.0395 (7)0.0401 (6)0.0429 (7)0.0007 (5)0.0037 (5)0.0117 (5)
C70.0438 (7)0.0517 (7)0.0450 (7)0.0076 (6)0.0041 (5)0.0122 (6)
C80.0544 (8)0.0603 (9)0.0503 (8)0.0106 (7)0.0047 (6)0.0078 (7)
C90.0711 (10)0.0723 (10)0.0396 (7)0.0049 (8)0.0002 (7)0.0089 (7)
C100.0632 (9)0.0711 (10)0.0466 (8)0.0019 (7)0.0144 (7)0.0174 (7)
C110.0542 (8)0.0729 (9)0.0398 (7)0.0209 (7)0.0061 (6)0.0197 (6)
C120.0528 (8)0.0840 (11)0.0442 (8)0.0228 (7)0.0006 (6)0.0127 (7)
C130.0574 (9)0.0923 (12)0.0596 (9)0.0241 (8)0.0055 (8)0.0175 (9)
Geometric parameters (Å, º) top
O1—C111.2163 (17)C4—H4B0.9700
N1—C111.3389 (18)C5—C101.391 (2)
N1—N21.3770 (15)C5—C61.4009 (18)
N1—H1N10.90 (2)C6—C71.3986 (19)
N2—C11.2841 (16)C7—C81.369 (2)
N3—C131.122 (2)C7—H7A0.9300
C1—C61.4766 (18)C8—C91.383 (2)
C1—C21.5061 (18)C8—H8A0.9300
C2—C31.519 (2)C9—C101.376 (2)
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—H10A0.9300
C3—C41.508 (2)C11—C121.5140 (19)
C3—H3A0.9700C12—C131.444 (2)
C3—H3B0.9700C12—H12A0.9700
C4—C51.510 (2)C12—H12B0.9700
C4—H4A0.9700
C11—N1—N2119.64 (11)C6—C5—C4120.20 (13)
C11—N1—H1N1112.9 (12)C7—C6—C5118.82 (12)
N2—N1—H1N1127.0 (12)C7—C6—C1120.57 (11)
C1—N2—N1117.97 (11)C5—C6—C1120.59 (11)
N2—C1—C6116.02 (11)C8—C7—C6121.36 (12)
N2—C1—C2124.94 (12)C8—C7—H7A119.3
C6—C1—C2119.01 (11)C6—C7—H7A119.3
C1—C2—C3112.97 (12)C7—C8—C9119.94 (13)
C1—C2—H2A109.0C7—C8—H8A120.0
C3—C2—H2A109.0C9—C8—H8A120.0
C1—C2—H2B109.0C10—C9—C8119.50 (14)
C3—C2—H2B109.0C10—C9—H9A120.3
H2A—C2—H2B107.8C8—C9—H9A120.3
C4—C3—C2111.41 (12)C9—C10—C5121.62 (13)
C4—C3—H3A109.3C9—C10—H10A119.2
C2—C3—H3A109.3C5—C10—H10A119.2
C4—C3—H3B109.3O1—C11—N1122.97 (13)
C2—C3—H3B109.3O1—C11—C12120.79 (13)
H3A—C3—H3B108.0N1—C11—C12116.23 (12)
C3—C4—C5111.56 (12)C13—C12—C11110.54 (13)
C3—C4—H4A109.3C13—C12—H12A109.5
C5—C4—H4A109.3C11—C12—H12A109.5
C3—C4—H4B109.3C13—C12—H12B109.5
C5—C4—H4B109.3C11—C12—H12B109.5
H4A—C4—H4B108.0H12A—C12—H12B108.1
C10—C5—C6118.76 (13)N3—C13—C12179.4 (2)
C10—C5—C4121.04 (12)
C11—N1—N2—C1173.62 (13)C2—C1—C6—C7175.60 (12)
N1—N2—C1—C6178.06 (11)N2—C1—C6—C5172.51 (11)
N1—N2—C1—C20.3 (2)C2—C1—C6—C55.95 (18)
N2—C1—C2—C3161.63 (13)C5—C6—C7—C80.2 (2)
C6—C1—C2—C320.06 (18)C1—C6—C7—C8178.26 (12)
C1—C2—C3—C450.51 (17)C6—C7—C8—C90.0 (2)
C2—C3—C4—C555.23 (17)C7—C8—C9—C100.1 (2)
C3—C4—C5—C10151.26 (14)C8—C9—C10—C50.4 (3)
C3—C4—C5—C630.03 (18)C6—C5—C10—C90.6 (2)
C10—C5—C6—C70.5 (2)C4—C5—C10—C9179.32 (15)
C4—C5—C6—C7179.24 (12)N2—N1—C11—O1178.53 (15)
C10—C5—C6—C1177.98 (12)N2—N1—C11—C122.2 (2)
C4—C5—C6—C10.76 (19)O1—C11—C12—C133.3 (2)
N2—C1—C6—C75.94 (18)N1—C11—C12—C13175.97 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.91 (2)1.96 (2)2.8640 (17)174.7 (19)
C10—H10A···N3ii0.932.583.491 (3)167
C2—H2A···Cg1iii0.972.803.6775 (17)152
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H13N3O
Mr227.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6414 (1), 7.6748 (1), 10.5644 (2)
α, β, γ (°)109.589 (1), 91.405 (1), 93.260 (1)
V3)582.13 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.59 × 0.51 × 0.40
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.687, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
5749, 1898, 1762
Rint0.017
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.05
No. of reflections1898
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.91 (2)1.96 (2)2.8640 (17)174.7 (19)
C10—H10A···N3ii0.932.583.491 (3)167
C2—H2A···Cg1iii0.972.803.6775 (17)152
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z1; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MAO, NMK and HAG thank the Deanship of Scientific Research at King Saud University for funding through the research group project No. RGP-VPP-099. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationBahgat, M. M. & Khalifa, N. M. (2006). Acta Pol. Pharm. 63, 181–188.  CAS PubMed Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDutta, A. K., Fei, X.-S. & Reith, M. E. A. (2002). Bioorg. Med. Chem. Lett. 12, 619–622.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Nezhawy, A. O. H., Ramla, M. M., Khalifa, N. M. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 531–539.  Web of Science CrossRef CAS Google Scholar
First citationKhalifa, N. M., Ramla, M. M., Amr, A. E.-G. E. & Abdulla, M. M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 3046–3062.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaddei, P., Torreggiani, A. & Fini, G. (2002). Biopolymers, 67, 289–293.  Web of Science CrossRef PubMed Google Scholar
First citationZaghary, W. A., Heiba, M. E., Anwar, M. M. & Hassan, S. A. (2005). Egypt. Pharm. J. (NRC), 4, 145–149.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds