organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-amino­but-2-enoate

aDepartment of Applied Chemistry, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
*Correspondence e-mail: wangx8000@sina.com

(Received 10 May 2012; accepted 19 May 2012; online 31 May 2012)

The title compound, C5H9NO2, is almost planar (r.m.s. deviation for the non-H atoms = 0.036 Å) and an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, N—H⋯O inter­actions link the mol­ecules into C(6) chains propagating along [010].

Related literature

For further synthetic details, see: Rakshit et al. (2010[Rakshit, S., Patureau, F. W. & Glorius, F. (2010). J. Am. Chem. Soc. 132, 9585-9587.]); Vanden Eynde et al. (1995[Vanden Eynde, J. J., Mayence, A., Lor, P. & Van Haverbeke, Y. (1995). Bull. Soc. Chim. Belg. 104, 387-392.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9NO2

  • Mr = 115.13

  • Monoclinic, P 21 /c

  • a = 8.3020 (12) Å

  • b = 9.7232 (14) Å

  • c = 7.665 (1) Å

  • β = 97.855 (13)°

  • V = 612.93 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 113 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Rigaku Saturn944 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.868, Tmax = 0.924

  • 6605 measured reflections

  • 1175 independent reflections

  • 1019 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.141

  • S = 1.20

  • 1175 reflections

  • 84 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.84 (2) 2.05 (2) 2.8778 (16) 168.9 (19)
N1—H1B⋯O1 0.89 (2) 2.08 (2) 2.7168 (16) 127.7 (15)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nifedipine was found to be a highly effective calcium antagonist. Consequently,many compounds which were similar in structure to nifedipine have already been used as therapeutic agents for treatment of cerebral circulatory disorder,hypertension and so on. The title compound (I) is an intermediate for the synthesis of this family of compounds and its structure is reported here. As shown in Fig. 1, in each molecular unit, almost non-hydrogen atoms in the same plane, and the deviation is 0.036 nm. The length of the double bond is slightly longer than the normal double bond of ethylene likewise, the bond between carbon and nitrogen are shorter than normal C—N bond. A short intermolecular N—H···O interaction (Table 1) occurs [symmetry code:(i)-x + 1,y - 1/2,-z + 1/2], and relatively strong intramolecular N—H···O hydrogen bonds also exists.

Related literature top

For further synthetic details, see: Rakshit et al. (2010); Vanden Eynde et al. (1995).

Experimental top

Impoved from the published methods by Rakshit et al. (2010) and Vanden Eynde et al. (1995) a modification of the synthetic procedure was used to prepare the title compound from methyl acetoacetate and ammonium acetate. Colorless prisms of (I) were obtained by recrystallizing from a ethyl acetate solution. mp: 355 K. Analysis, calculated for C5H9NO2: C 52.16, H 7.88, N 12.17; found: C 52.15, H 7.87, N 12.16.

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I).
Methyl 3-aminobut-2-enoate top
Crystal data top
C5H9NO2Dx = 1.248 Mg m3
Mr = 115.13Melting point: 355 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
a = 8.3020 (12) ÅCell parameters from 670 reflections
b = 9.7232 (14) Åθ = 27.9–71.6°
c = 7.665 (1) ŵ = 0.81 mm1
β = 97.855 (13)°T = 113 K
V = 612.93 (15) Å3Prism, colorless
Z = 40.18 × 0.16 × 0.10 mm
F(000) = 248
Data collection top
Rigaku Saturn944 CCD
diffractometer
1175 independent reflections
Radiation source: fine-focus sealed tube1019 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.071
Detector resolution: 14.629 pixels mm-1θmax = 71.9°, θmin = 5.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 119
Tmin = 0.868, Tmax = 0.924l = 99
6605 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0954P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1175 reflectionsΔρmax = 0.36 e Å3
84 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.32 (2)
Crystal data top
C5H9NO2V = 612.93 (15) Å3
Mr = 115.13Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.3020 (12) ŵ = 0.81 mm1
b = 9.7232 (14) ÅT = 113 K
c = 7.665 (1) Å0.18 × 0.16 × 0.10 mm
β = 97.855 (13)°
Data collection top
Rigaku Saturn944 CCD
diffractometer
1175 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
1019 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.924Rint = 0.071
6605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.36 e Å3
1175 reflectionsΔρmin = 0.51 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36825 (11)0.18110 (10)0.32340 (12)0.0327 (4)
O20.12958 (12)0.21372 (10)0.42596 (13)0.0357 (4)
N10.45092 (13)0.08490 (14)0.27315 (14)0.0320 (4)
C10.24663 (14)0.13160 (14)0.37507 (15)0.0279 (4)
C20.21064 (14)0.01182 (15)0.38684 (15)0.0294 (4)
H20.11420.03870.43170.035*
C30.31094 (14)0.11148 (14)0.33542 (15)0.0285 (4)
C40.26670 (18)0.26132 (15)0.34523 (18)0.0348 (4)
H4A0.26440.30350.22880.042*
H4B0.15920.26970.38360.042*
H4C0.34770.30830.42970.042*
C50.15619 (19)0.35898 (16)0.4094 (2)0.0400 (5)
H5A0.25630.38540.48490.048*
H5B0.06410.40960.44550.048*
H5C0.16630.38100.28660.048*
H1B0.487 (2)0.002 (2)0.269 (3)0.048 (5)*
H1A0.515 (2)0.147 (2)0.249 (2)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0298 (6)0.0295 (6)0.0403 (6)0.0019 (4)0.0102 (4)0.0002 (4)
O20.0328 (6)0.0327 (7)0.0437 (6)0.0049 (4)0.0128 (4)0.0031 (4)
N10.0287 (6)0.0280 (8)0.0409 (7)0.0012 (5)0.0109 (5)0.0021 (5)
C10.0263 (6)0.0312 (9)0.0262 (6)0.0009 (5)0.0040 (5)0.0015 (5)
C20.0259 (6)0.0325 (9)0.0311 (7)0.0039 (5)0.0080 (5)0.0006 (5)
C30.0299 (7)0.0301 (8)0.0252 (6)0.0030 (5)0.0024 (5)0.0002 (5)
C40.0423 (8)0.0294 (8)0.0335 (7)0.0043 (6)0.0078 (6)0.0007 (5)
C50.0457 (8)0.0316 (9)0.0436 (8)0.0095 (6)0.0097 (6)0.0031 (6)
Geometric parameters (Å, º) top
O1—C11.2317 (16)C2—H20.9500
O2—C11.3557 (15)C3—C41.5069 (18)
O2—C51.4379 (18)C4—H4A0.9800
N1—C31.3404 (17)C4—H4B0.9800
N1—H1B0.89 (2)C4—H4C0.9800
N1—H1A0.84 (2)C5—H5A0.9800
C1—C21.432 (2)C5—H5B0.9800
C2—C31.3702 (19)C5—H5C0.9800
C1—O2—C5115.36 (11)C3—C4—H4A109.5
C3—N1—H1B120.4 (12)C3—C4—H4B109.5
C3—N1—H1A123.3 (14)H4A—C4—H4B109.5
H1B—N1—H1A115.8 (18)C3—C4—H4C109.5
O1—C1—O2120.91 (13)H4A—C4—H4C109.5
O1—C1—C2126.03 (12)H4B—C4—H4C109.5
O2—C1—C2113.05 (11)O2—C5—H5A109.5
C3—C2—C1122.04 (12)O2—C5—H5B109.5
C3—C2—H2119.0H5A—C5—H5B109.5
C1—C2—H2119.0O2—C5—H5C109.5
N1—C3—C2123.82 (13)H5A—C5—H5C109.5
N1—C3—C4115.67 (12)H5B—C5—H5C109.5
C2—C3—C4120.50 (12)
C5—O2—C1—O11.92 (16)O2—C1—C2—C3177.61 (10)
C5—O2—C1—C2177.39 (11)C1—C2—C3—N11.13 (19)
O1—C1—C2—C31.7 (2)C1—C2—C3—C4178.35 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.84 (2)2.05 (2)2.8778 (16)168.9 (19)
N1—H1B···O10.89 (2)2.08 (2)2.7168 (16)127.7 (15)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H9NO2
Mr115.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)8.3020 (12), 9.7232 (14), 7.665 (1)
β (°) 97.855 (13)
V3)612.93 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerRigaku Saturn944 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.868, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
6605, 1175, 1019
Rint0.071
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.141, 1.20
No. of reflections1175
No. of parameters84
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.51

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.84 (2)2.05 (2)2.8778 (16)168.9 (19)
N1—H1B···O10.89 (2)2.08 (2)2.7168 (16)127.7 (15)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Science and Technology Fund of Tianjin Province, China, for financial support (No. 10ZCKFSH00500).

References

First citationRakshit, S., Patureau, F. W. & Glorius, F. (2010). J. Am. Chem. Soc. 132, 9585–9587.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanden Eynde, J. J., Mayence, A., Lor, P. & Van Haverbeke, Y. (1995). Bull. Soc. Chim. Belg. 104, 387–392.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds