organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-2-methyl-1,1-dioxo-N-phenyl-2H-1λ6,2-benzo­thia­zine-3-carboxamide

aDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: waseeq786@gmail.com

(Received 10 May 2012; accepted 14 May 2012; online 19 May 2012)

In the title mol­ecule, C16H14N2O4S, the thia­zine ring adopts a twist chair conformation with the N and adjacent C atom displaced by 0.966 (3) and 0.386 (4) Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The dihedral angle between the mean planes of the benzene rings is 37.65 (10)°. The mol­ecular structure features an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the biological activity of benzothia­zine derivatives, and further synthetic details, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Bukhari, M. H. & Parvez, M. (2008). Acta Cryst. E64, o1922.]; 2009[Siddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279-o2280.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O4S

  • Mr = 330.35

  • Monoclinic, P 21 /c

  • a = 10.502 (2) Å

  • b = 7.649 (3) Å

  • c = 19.235 (4) Å

  • β = 103.395 (15)°

  • V = 1503.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.10 × 0.08 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.977, Tmax = 0.984

  • 12580 measured reflections

  • 3450 independent reflections

  • 2901 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.06

  • 3450 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.88 2.26 2.987 (2) 140
C3—H3⋯O2ii 0.95 2.48 3.300 (3) 145
C13—H13⋯O4iii 0.95 2.48 3.339 (3) 151
O3—H3O⋯O4 0.84 1.79 2.534 (2) 146
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our research on the synthesis of potentially biologically active 1,2-benzothiazine 1,1-dioxide derivatives (Siddiqui et al., 2007; Ahmad et al., 2010) herein, we report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; 2009). The heterocyclic thiazine ring adopts a twist chair conformation with atoms S1 and C1 displaced by 0.966 (3) and 0.386 (4) Å, respectively, on the same side from the mean plane formed by the remaining ring atoms (r.m.s. deviation 0.004 for N1/C6–C8 atoms). The mean-plane of the benzene rings C1–C6 and C11–C16 are inclined at a dihedral angle 37.65 (10)° with respect to each other.

The molecular structure is stabilized by an intra-molecular O3—H3O···O4 hydrogen bond. The crystal packing is consolidated by intermolecular N2—H2N···O1, C3—H3···O2 and C13—H13···O4 hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For background to the biological activity of benzothiazine derivatives, and further synthetic details, see: Siddiqui et al. (2007); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008; 2009).

Experimental top

A mixture of 4-hydroxy-2-methyl-2H-1,2 benzothiazine-3-carboxylic acid methyl ester 1,1 dioxide (0.65 g, 2.42 mmol) and aniline (0.65 ml, 2.42 mmol) in xylene (150 ml) was allowed to react as per reported procedure (Siddiqui et al., 2007) to isolate the title compound. Colourless prisms were grown from ethyl acetate solution by slow evaporation at room temperature; m.p. = 484–485 K

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84, N—H = 0.88 Å and C—H = 0.95 and 0.98 Å, for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(O) or 1.2Ueq(C/N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A part of the unit cell showing hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
4-Hydroxy-2-methyl-1,1-dioxo-N-phenyl-2H- 1λ6,2-benzothiazine-3-carboxamide top
Crystal data top
C16H14N2O4SF(000) = 688
Mr = 330.35Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6808 reflections
a = 10.502 (2) Åθ = 1.0–27.5°
b = 7.649 (3) ŵ = 0.24 mm1
c = 19.235 (4) ÅT = 173 K
β = 103.395 (15)°Prism, colorless
V = 1503.1 (7) Å30.10 × 0.08 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3450 independent reflections
Radiation source: fine-focus sealed tube2901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and ϕ scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1313
Tmin = 0.977, Tmax = 0.984k = 99
12580 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.119H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0433P)2 + 1.2798P]
where P = (Fo2 + 2Fc2)/3
3450 reflections(Δ/σ)max = 0.002
210 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H14N2O4SV = 1503.1 (7) Å3
Mr = 330.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.502 (2) ŵ = 0.24 mm1
b = 7.649 (3) ÅT = 173 K
c = 19.235 (4) Å0.10 × 0.08 × 0.07 mm
β = 103.395 (15)°
Data collection top
Nonius KappaCCD
diffractometer
3450 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2901 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.059
12580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
3450 reflectionsΔρmin = 0.31 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06977 (5)0.65050 (7)0.08374 (3)0.02930 (15)
O10.03451 (13)0.7324 (2)0.02412 (8)0.0343 (4)
O20.03040 (14)0.5885 (2)0.14150 (8)0.0397 (4)
O30.46114 (13)0.7361 (2)0.03008 (8)0.0336 (3)
H3O0.48350.66110.06250.050*
O40.44020 (13)0.4617 (2)0.10046 (7)0.0327 (3)
N10.16698 (15)0.4874 (2)0.05340 (8)0.0269 (4)
N20.25707 (16)0.2921 (2)0.06629 (9)0.0286 (4)
H2N0.18360.28170.03350.034*
C10.1745 (2)0.7916 (3)0.11620 (10)0.0290 (4)
C20.1311 (2)0.8897 (3)0.17712 (11)0.0344 (5)
H20.04290.88070.20360.041*
C30.2174 (2)1.0016 (3)0.19931 (12)0.0374 (5)
H30.18921.06900.24150.045*
C40.3453 (2)1.0147 (3)0.15962 (12)0.0349 (5)
H40.40401.09270.17470.042*
C50.3885 (2)0.9167 (3)0.09875 (11)0.0312 (4)
H50.47620.92860.07190.037*
C60.30455 (19)0.8003 (3)0.07627 (10)0.0267 (4)
C70.34974 (18)0.6857 (3)0.01458 (10)0.0265 (4)
C80.28462 (18)0.5399 (3)0.00344 (10)0.0258 (4)
C90.33296 (18)0.4289 (3)0.05864 (10)0.0275 (4)
C100.1852 (2)0.3560 (3)0.10655 (12)0.0386 (5)
H10A0.23850.25920.08210.046*
H10B0.22960.41010.14060.046*
H10C0.09970.31150.13220.046*
C110.28010 (19)0.1627 (3)0.12035 (11)0.0293 (4)
C120.3610 (2)0.1906 (3)0.18722 (11)0.0338 (5)
H120.40410.29970.19860.041*
C130.3782 (2)0.0577 (3)0.23736 (13)0.0426 (6)
H130.43440.07580.28320.051*
C140.3156 (3)0.0998 (4)0.22204 (15)0.0486 (6)
H140.32790.18980.25700.058*
C150.2342 (3)0.1267 (3)0.15529 (15)0.0497 (6)
H150.19040.23550.14450.060*
C160.2163 (2)0.0035 (3)0.10429 (13)0.0395 (5)
H160.16060.01560.05840.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0215 (2)0.0334 (3)0.0307 (3)0.0006 (2)0.00107 (18)0.0006 (2)
O10.0239 (7)0.0404 (9)0.0390 (8)0.0016 (6)0.0082 (6)0.0030 (7)
O20.0295 (8)0.0462 (10)0.0373 (8)0.0022 (7)0.0046 (6)0.0019 (7)
O30.0269 (7)0.0359 (8)0.0334 (8)0.0061 (6)0.0021 (6)0.0031 (6)
O40.0277 (7)0.0370 (8)0.0296 (7)0.0034 (6)0.0011 (6)0.0033 (6)
N10.0228 (8)0.0292 (9)0.0267 (8)0.0014 (7)0.0016 (6)0.0016 (7)
N20.0238 (8)0.0316 (9)0.0288 (8)0.0000 (7)0.0027 (6)0.0034 (7)
C10.0293 (10)0.0288 (11)0.0283 (10)0.0018 (8)0.0052 (8)0.0002 (8)
C20.0357 (11)0.0340 (12)0.0301 (10)0.0059 (9)0.0010 (8)0.0011 (9)
C30.0528 (14)0.0295 (11)0.0295 (10)0.0065 (10)0.0088 (9)0.0033 (9)
C40.0445 (12)0.0261 (11)0.0376 (11)0.0015 (9)0.0166 (9)0.0016 (9)
C50.0310 (10)0.0286 (10)0.0349 (11)0.0022 (8)0.0093 (8)0.0004 (9)
C60.0260 (10)0.0252 (10)0.0287 (9)0.0024 (8)0.0061 (7)0.0014 (8)
C70.0205 (9)0.0307 (10)0.0275 (9)0.0009 (7)0.0040 (7)0.0032 (8)
C80.0219 (9)0.0280 (10)0.0260 (9)0.0002 (7)0.0025 (7)0.0001 (8)
C90.0239 (9)0.0298 (10)0.0288 (10)0.0013 (8)0.0062 (7)0.0004 (8)
C100.0436 (13)0.0346 (12)0.0344 (11)0.0039 (10)0.0025 (9)0.0071 (9)
C110.0256 (10)0.0294 (10)0.0353 (11)0.0050 (8)0.0117 (8)0.0044 (9)
C120.0358 (11)0.0349 (12)0.0317 (10)0.0027 (9)0.0099 (8)0.0020 (9)
C130.0440 (13)0.0511 (15)0.0342 (11)0.0086 (11)0.0118 (10)0.0098 (11)
C140.0510 (15)0.0430 (14)0.0551 (15)0.0076 (12)0.0188 (12)0.0207 (12)
C150.0505 (15)0.0320 (13)0.0688 (17)0.0029 (11)0.0184 (13)0.0108 (12)
C160.0370 (12)0.0339 (12)0.0468 (13)0.0009 (10)0.0082 (10)0.0036 (10)
Geometric parameters (Å, º) top
S1—O21.4228 (15)C5—C61.390 (3)
S1—O11.4288 (15)C5—H50.9500
S1—N11.6316 (18)C6—C71.463 (3)
S1—C11.756 (2)C7—C81.351 (3)
O3—C71.338 (2)C8—C91.458 (3)
O3—H3O0.8400C10—H10A0.9800
O4—C91.249 (2)C10—H10B0.9800
N1—C81.436 (2)C10—H10C0.9800
N1—C101.478 (3)C11—C121.384 (3)
N2—C91.344 (3)C11—C161.389 (3)
N2—C111.415 (3)C12—C131.384 (3)
N2—H2N0.8800C12—H120.9500
C1—C21.377 (3)C13—C141.372 (4)
C1—C61.405 (3)C13—H130.9500
C2—C31.385 (3)C14—C151.383 (4)
C2—H20.9500C14—H140.9500
C3—C41.386 (3)C15—C161.380 (3)
C3—H30.9500C15—H150.9500
C4—C51.376 (3)C16—H160.9500
C4—H40.9500
O2—S1—O1119.39 (9)O3—C7—C6114.78 (17)
O2—S1—N1108.21 (10)C8—C7—C6122.84 (18)
O1—S1—N1107.76 (9)C7—C8—N1120.90 (17)
O2—S1—C1109.76 (10)C7—C8—C9121.19 (18)
O1—S1—C1108.43 (10)N1—C8—C9117.89 (17)
N1—S1—C1101.85 (9)O4—C9—N2123.74 (19)
C7—O3—H3O109.5O4—C9—C8120.11 (18)
C8—N1—C10115.09 (16)N2—C9—C8116.15 (17)
C8—N1—S1113.31 (14)N1—C10—H10A109.5
C10—N1—S1116.32 (13)N1—C10—H10B109.5
C9—N2—C11128.34 (17)H10A—C10—H10B109.5
C9—N2—H2N115.8N1—C10—H10C109.5
C11—N2—H2N115.8H10A—C10—H10C109.5
C2—C1—C6121.9 (2)H10B—C10—H10C109.5
C2—C1—S1121.73 (16)C12—C11—C16120.2 (2)
C6—C1—S1116.40 (15)C12—C11—N2122.6 (2)
C1—C2—C3119.2 (2)C16—C11—N2117.26 (19)
C1—C2—H2120.4C11—C12—C13119.1 (2)
C3—C2—H2120.4C11—C12—H12120.4
C4—C3—C2119.7 (2)C13—C12—H12120.4
C4—C3—H3120.2C14—C13—C12121.1 (2)
C2—C3—H3120.2C14—C13—H13119.4
C5—C4—C3121.1 (2)C12—C13—H13119.4
C5—C4—H4119.5C13—C14—C15119.5 (2)
C3—C4—H4119.5C13—C14—H14120.2
C4—C5—C6120.4 (2)C15—C14—H14120.2
C4—C5—H5119.8C16—C15—C14120.4 (2)
C6—C5—H5119.8C16—C15—H15119.8
C5—C6—C1117.81 (18)C14—C15—H15119.8
C5—C6—C7121.73 (18)C15—C16—C11119.7 (2)
C1—C6—C7120.43 (18)C15—C16—H16120.2
O3—C7—C8122.38 (18)C11—C16—H16120.2
O2—S1—N1—C8169.66 (13)C1—C6—C7—C817.5 (3)
O1—S1—N1—C859.96 (15)O3—C7—C8—N1178.49 (17)
C1—S1—N1—C854.02 (15)C6—C7—C8—N11.4 (3)
O2—S1—N1—C1032.92 (18)O3—C7—C8—C90.1 (3)
O1—S1—N1—C10163.30 (15)C6—C7—C8—C9179.90 (18)
C1—S1—N1—C1082.72 (16)C10—N1—C8—C796.1 (2)
O2—S1—C1—C229.0 (2)S1—N1—C8—C741.2 (2)
O1—S1—C1—C2103.00 (19)C10—N1—C8—C982.5 (2)
N1—S1—C1—C2143.52 (18)S1—N1—C8—C9140.21 (16)
O2—S1—C1—C6151.62 (16)C11—N2—C9—O40.2 (3)
O1—S1—C1—C676.36 (17)C11—N2—C9—C8179.09 (18)
N1—S1—C1—C637.12 (18)C7—C8—C9—O44.3 (3)
C6—C1—C2—C30.7 (3)N1—C8—C9—O4174.32 (18)
S1—C1—C2—C3178.60 (17)C7—C8—C9—N2176.80 (18)
C1—C2—C3—C40.8 (3)N1—C8—C9—N24.6 (3)
C2—C3—C4—C50.8 (3)C9—N2—C11—C1223.9 (3)
C3—C4—C5—C60.8 (3)C9—N2—C11—C16156.9 (2)
C4—C5—C6—C12.2 (3)C16—C11—C12—C130.6 (3)
C4—C5—C6—C7175.80 (19)N2—C11—C12—C13179.77 (19)
C2—C1—C6—C52.2 (3)C11—C12—C13—C140.7 (3)
S1—C1—C6—C5177.17 (15)C12—C13—C14—C150.3 (4)
C2—C1—C6—C7175.82 (19)C13—C14—C15—C160.2 (4)
S1—C1—C6—C74.8 (3)C14—C15—C16—C110.2 (4)
C5—C6—C7—O319.4 (3)C12—C11—C16—C150.2 (3)
C1—C6—C7—O3162.66 (18)N2—C11—C16—C15179.3 (2)
C5—C6—C7—C8160.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.882.262.987 (2)140
C3—H3···O2ii0.952.483.300 (3)145
C13—H13···O4iii0.952.483.339 (3)151
N2—H2N···N10.882.272.724 (2)112
O3—H3O···O40.841.792.534 (2)146
C12—H12···O40.952.362.902 (3)116
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14N2O4S
Mr330.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.502 (2), 7.649 (3), 19.235 (4)
β (°) 103.395 (15)
V3)1503.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.10 × 0.08 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
12580, 3450, 2901
Rint0.059
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.06
No. of reflections3450
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.31

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.882.262.987 (2)140.0
C3—H3···O2ii0.952.483.300 (3)145.2
C13—H13···O4iii0.952.483.339 (3)150.7
O3—H3O···O40.841.792.534 (2)145.9
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Bukhari, M. H. & Parvez, M. (2008). Acta Cryst. E64, o1922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279–o2280.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds