organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5Z)-5-(2-Hy­dr­oxy­benzyl­­idene)-3-(4-methyl­phen­yl)-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 May 2012; accepted 13 May 2012; online 19 May 2012)

In the title compound, C17H13NO2S2, the dihedral angles between the 2-sulfanyl­idene-1,3-thia­zolidin-4-one group and the pendant toluene and 2-hy­droxy­benzene rings are 74.62 (6) and 8.73 (12)°, respectively. An intra­molecular C—H⋯S inter­action occurs. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(16) loops. This link is reinforced by a pair of C—H⋯O hydrogen bonds. The dimers are connected by weak C—H⋯S inter­actions.

Related literature

For related structures and further synthetic details, see: Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.],b[Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009b). Acta Cryst. E65, o2917.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2S2

  • Mr = 327.40

  • Monoclinic, P 21 /c

  • a = 13.8258 (6) Å

  • b = 5.4278 (3) Å

  • c = 21.0715 (9) Å

  • β = 101.857 (3)°

  • V = 1547.54 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.965

  • 10652 measured reflections

  • 2801 independent reflections

  • 1473 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.101

  • S = 0.93

  • 2801 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.92 2.712 (3) 162
C6—H6⋯S2ii 0.93 2.84 3.736 (4) 163
C11—H11⋯O2i 0.93 2.38 3.294 (4) 167
C13—H13⋯S1 0.93 2.48 3.194 (3) 133
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In the search for new enzyme inhibitors, a series of rohdanine derivatives were prepared and their crystal structures have been reported such as (5Z)-5-(2-hydroxybenzylidene)-3-phenyl-2-sulfanylidene-1,3-thiazolidin-4-one (Shahwar et al., 2009a) and (5Z)-5-(2-methylbenzylidene)-3-phenyl-2-sulfanylidene-1,3-thiazolidin-4-one (Shahwar et al., 2009b) which are related to the title compound, (I), (Fig. 1).

In (I), the toluene group A (C1–C7), group B (N1/C8/S1/C10/C9/O1/S2) of 2-sulfanylidene-1,3-thiazolidin-4-one and group C (C11–C17/O2) of 2-methylphenol are planar with r. m. s. deviation of 0.0246 Å, 0.0186 Å and 0.0175 Å, respectively. The dihedral angle between A/B, A/C and B/C is 74.62 (6), 70.16 (7) and 8.73 (12)°, respectively. The molecules are dimerized due to strong O—H···O type of H-bonding with R22(16) (Bernstein et al., 1995) ring motifs (Table 1, Fig. 2). R22(7) ring motifs are formed within the dimers when weak H-boding of C—H···O type is considered. The dimers are interlinked due to C—H···S type of H-bondings (Table 1, Fig. 2).

Related literature top

For related structures and further synthetic details, see: Shahwar et al. (2009a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-(4-methylphenyl)-2-sulfanylidene-1,3-thiazolidin-4-one (0.419 g, 0.2 mol) (prepared according to the method: Shahwar et al. 2009a), 2-hydroxybenzaldehyde (0.244 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in distilled water (10 ml) and continuously stirred for 24 h. The mixture was neutralized with 5% HCl and the crude product obtained was recrysrallized in ethylacetate to get the yellow needles of (I).

Refinement top

The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, showing that molecules form dimers with R22(16) and other ring motifs.
(5Z)-5-(2-Hydroxybenzylidene)-3-(4-methylphenyl)-2-sulfanylidene-1,3- thiazolidin-4-one top
Crystal data top
C17H13NO2S2F(000) = 680
Mr = 327.40Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1473 reflections
a = 13.8258 (6) Åθ = 3.0–25.3°
b = 5.4278 (3) ŵ = 0.35 mm1
c = 21.0715 (9) ÅT = 296 K
β = 101.857 (3)°Needle, yellow
V = 1547.54 (13) Å30.35 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2801 independent reflections
Radiation source: fine-focus sealed tube1473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.945, Tmax = 0.965l = 2525
10652 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0385P)2]
where P = (Fo2 + 2Fc2)/3
2801 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H13NO2S2V = 1547.54 (13) Å3
Mr = 327.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8258 (6) ŵ = 0.35 mm1
b = 5.4278 (3) ÅT = 296 K
c = 21.0715 (9) Å0.35 × 0.15 × 0.13 mm
β = 101.857 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1473 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.965Rint = 0.069
10652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.93Δρmax = 0.19 e Å3
2801 reflectionsΔρmin = 0.26 e Å3
201 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32730 (6)0.24641 (18)0.08942 (4)0.0555 (3)
S20.14244 (6)0.0283 (2)0.04718 (4)0.0633 (4)
O10.28996 (14)0.6397 (4)0.06441 (10)0.0510 (8)
O20.57469 (16)1.0037 (5)0.06997 (10)0.0773 (10)
N10.21224 (16)0.3302 (5)0.02022 (11)0.0383 (9)
C10.1268 (2)0.3173 (6)0.07351 (14)0.0387 (11)
C20.1162 (2)0.1227 (7)0.11500 (14)0.0486 (13)
C30.0316 (2)0.1030 (7)0.16312 (14)0.0531 (14)
C40.0423 (2)0.2766 (7)0.16993 (15)0.0486 (13)
C50.0286 (2)0.4723 (7)0.12792 (17)0.0598 (14)
C60.0553 (2)0.4943 (7)0.07940 (15)0.0534 (12)
C70.1379 (2)0.2463 (7)0.21949 (16)0.0805 (16)
C80.2200 (2)0.1799 (6)0.03366 (14)0.0436 (11)
C90.2879 (2)0.5003 (7)0.01944 (15)0.0404 (11)
C100.3612 (2)0.4829 (6)0.04263 (13)0.0408 (10)
C110.4379 (2)0.6400 (6)0.05800 (13)0.0418 (11)
C120.5128 (2)0.6614 (6)0.11718 (13)0.0391 (11)
C130.5208 (2)0.5059 (7)0.17093 (14)0.0530 (14)
C140.5919 (2)0.5422 (7)0.22614 (15)0.0592 (14)
C150.6561 (2)0.7355 (7)0.22960 (15)0.0564 (14)
C160.6513 (2)0.8925 (7)0.17828 (15)0.0520 (13)
C170.5808 (2)0.8546 (6)0.12202 (14)0.0446 (11)
H20.165390.003610.111090.0582*
H2A0.621571.099410.076230.0928*
H30.024690.030320.191410.0637*
H50.076930.593680.132130.0718*
H60.062900.627920.051180.0641*
H7A0.128820.125930.251150.1208*
H7B0.156150.401090.240580.1208*
H7C0.189160.192510.198130.1208*
H110.443770.752260.025680.0501*
H130.477040.374870.169280.0640*
H140.596390.435280.261100.0709*
H150.703550.760610.267270.0677*
H160.695161.023950.181090.0625*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0601 (5)0.0596 (7)0.0403 (5)0.0257 (5)0.0047 (4)0.0102 (5)
S20.0689 (6)0.0671 (8)0.0527 (5)0.0349 (6)0.0096 (4)0.0025 (5)
O10.0484 (13)0.0539 (16)0.0449 (13)0.0174 (12)0.0037 (11)0.0132 (13)
O20.0795 (18)0.087 (2)0.0509 (14)0.0543 (16)0.0205 (12)0.0243 (16)
N10.0362 (14)0.0385 (18)0.0362 (14)0.0112 (14)0.0015 (12)0.0016 (14)
C10.0347 (17)0.041 (2)0.0385 (18)0.0079 (18)0.0031 (15)0.0005 (18)
C20.0429 (19)0.053 (3)0.0473 (19)0.0042 (19)0.0032 (17)0.006 (2)
C30.057 (2)0.056 (3)0.0422 (19)0.011 (2)0.0009 (18)0.0158 (19)
C40.0417 (19)0.056 (3)0.0441 (19)0.011 (2)0.0002 (16)0.011 (2)
C50.049 (2)0.050 (3)0.075 (2)0.006 (2)0.000 (2)0.007 (2)
C60.053 (2)0.043 (2)0.060 (2)0.005 (2)0.0019 (18)0.013 (2)
C70.055 (2)0.112 (4)0.061 (2)0.014 (2)0.0196 (18)0.012 (3)
C80.0447 (18)0.044 (2)0.0401 (18)0.0132 (18)0.0042 (15)0.0036 (18)
C90.0370 (18)0.040 (2)0.0431 (19)0.0070 (18)0.0054 (16)0.0045 (19)
C100.0372 (17)0.047 (2)0.0363 (17)0.0089 (18)0.0032 (14)0.0034 (18)
C110.0417 (18)0.044 (2)0.0374 (17)0.0101 (18)0.0026 (15)0.0061 (17)
C120.0345 (17)0.042 (2)0.0379 (18)0.0092 (18)0.0007 (15)0.0006 (18)
C130.052 (2)0.053 (3)0.047 (2)0.014 (2)0.0059 (17)0.008 (2)
C140.064 (2)0.061 (3)0.044 (2)0.012 (2)0.0091 (18)0.014 (2)
C150.056 (2)0.066 (3)0.0393 (19)0.008 (2)0.0089 (17)0.002 (2)
C160.0414 (18)0.062 (3)0.046 (2)0.0162 (19)0.0066 (16)0.002 (2)
C170.0452 (19)0.047 (2)0.0386 (18)0.0076 (19)0.0016 (16)0.0036 (19)
Geometric parameters (Å, º) top
S1—C81.731 (3)C12—C171.398 (4)
S1—C101.741 (3)C12—C131.399 (4)
S2—C81.623 (3)C13—C141.374 (4)
O1—C91.218 (4)C14—C151.367 (5)
O2—C171.352 (4)C15—C161.368 (5)
O2—H2A0.8200C16—C171.387 (4)
N1—C11.455 (4)C2—H20.9300
N1—C91.393 (4)C3—H30.9300
N1—C81.384 (4)C5—H50.9300
C1—C21.360 (5)C6—H60.9300
C1—C61.366 (5)C7—H7A0.9600
C2—C31.386 (4)C7—H7B0.9600
C3—C41.376 (5)C7—H7C0.9600
C4—C51.371 (5)C11—H110.9300
C4—C71.516 (4)C13—H130.9300
C5—C61.385 (4)C14—H140.9300
C9—C101.484 (4)C15—H150.9300
C10—C111.347 (4)C16—H160.9300
C11—C121.453 (4)
C8—S1—C1093.57 (14)C14—C15—C16120.7 (3)
C17—O2—H2A109.00C15—C16—C17119.7 (3)
C1—N1—C8121.2 (2)O2—C17—C16121.4 (3)
C1—N1—C9122.0 (2)C12—C17—C16121.2 (3)
C8—N1—C9116.7 (2)O2—C17—C12117.5 (3)
N1—C1—C6119.6 (3)C1—C2—H2120.00
C2—C1—C6120.5 (3)C3—C2—H2120.00
N1—C1—C2119.8 (3)C2—C3—H3119.00
C1—C2—C3119.6 (3)C4—C3—H3119.00
C2—C3—C4121.4 (3)C4—C5—H5119.00
C3—C4—C7121.4 (3)C6—C5—H5119.00
C5—C4—C7121.0 (3)C1—C6—H6120.00
C3—C4—C5117.5 (3)C5—C6—H6120.00
C4—C5—C6121.8 (3)C4—C7—H7A109.00
C1—C6—C5119.2 (3)C4—C7—H7B109.00
S1—C8—S2122.09 (18)C4—C7—H7C109.00
S1—C8—N1110.2 (2)H7A—C7—H7B109.00
S2—C8—N1127.7 (2)H7A—C7—H7C109.00
O1—C9—N1122.7 (3)H7B—C7—H7C110.00
O1—C9—C10127.2 (3)C10—C11—H11115.00
N1—C9—C10110.1 (3)C12—C11—H11115.00
S1—C10—C11128.4 (2)C12—C13—H13119.00
C9—C10—C11122.2 (3)C14—C13—H13119.00
S1—C10—C9109.4 (2)C13—C14—H14120.00
C10—C11—C12130.1 (3)C15—C14—H14120.00
C11—C12—C17118.2 (3)C14—C15—H15120.00
C13—C12—C17117.0 (3)C16—C15—H15120.00
C11—C12—C13124.8 (3)C15—C16—H16120.00
C12—C13—C14121.5 (3)C17—C16—H16120.00
C13—C14—C15119.9 (3)
C10—S1—C8—S2177.0 (2)C3—C4—C5—C61.2 (5)
C10—S1—C8—N11.8 (2)C7—C4—C5—C6175.5 (3)
C8—S1—C10—C92.5 (2)C4—C5—C6—C10.5 (5)
C8—S1—C10—C11174.7 (3)O1—C9—C10—S1177.6 (3)
C8—N1—C1—C273.7 (4)O1—C9—C10—C115.0 (5)
C8—N1—C1—C6102.9 (4)N1—C9—C10—S12.6 (3)
C9—N1—C1—C2109.1 (4)N1—C9—C10—C11174.8 (3)
C9—N1—C1—C674.3 (4)S1—C10—C11—C121.0 (5)
C1—N1—C8—S1177.9 (2)C9—C10—C11—C12175.9 (3)
C1—N1—C8—S20.9 (4)C10—C11—C12—C132.8 (5)
C9—N1—C8—S10.6 (3)C10—C11—C12—C17175.5 (3)
C9—N1—C8—S2178.2 (2)C11—C12—C13—C14177.9 (3)
C1—N1—C9—O13.8 (5)C17—C12—C13—C140.4 (5)
C1—N1—C9—C10176.0 (3)C11—C12—C17—O22.6 (4)
C8—N1—C9—O1178.9 (3)C11—C12—C17—C16177.0 (3)
C8—N1—C9—C101.4 (4)C13—C12—C17—O2179.0 (3)
N1—C1—C2—C3175.8 (3)C13—C12—C17—C161.5 (4)
C6—C1—C2—C30.7 (5)C12—C13—C14—C150.7 (5)
N1—C1—C6—C5176.1 (3)C13—C14—C15—C160.8 (5)
C2—C1—C6—C50.5 (5)C14—C15—C16—C170.3 (5)
C1—C2—C3—C40.0 (5)C15—C16—C17—O2179.0 (3)
C2—C3—C4—C51.0 (5)C15—C16—C17—C121.4 (5)
C2—C3—C4—C7175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.922.712 (3)162
C6—H6···S2ii0.932.843.736 (4)163
C11—H11···O2i0.932.383.294 (4)167
C13—H13···S10.932.483.194 (3)133
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H13NO2S2
Mr327.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8258 (6), 5.4278 (3), 21.0715 (9)
β (°) 101.857 (3)
V3)1547.54 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.35 × 0.15 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.945, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
10652, 2801, 1473
Rint0.069
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.101, 0.93
No. of reflections2801
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.922.712 (3)162
C6—H6···S2ii0.932.843.736 (4)163
C11—H11···O2i0.932.383.294 (4)167
C13—H13···S10.932.483.194 (3)133
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009b). Acta Cryst. E65, o2917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds