organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Piperazine-1,4-di­yl)diaceto­nitrile

aSchool of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: xiaojun801115@163.com

(Received 11 May 2012; accepted 14 May 2012; online 19 May 2012)

The complete mol­ecule of the title compound, C8H12N4, is generated by a crystallographic inversion centre. The piperazine ring adopts a chair conformation with the N-bonded substituents in equatorial positions. In the crystal, mol­ecules are linked by C—H⋯Nc (c = cyanide) hydrogen bonds.

Related literature

For related structures, see: Ma et al. (2007[Ma, H.-F., Jia, H.-S., Qian, Y., Wen, F. & Chen, B.-L. (2007). Acta Cryst. E63, o311-o312.]); Liu & Liu (2011[Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.]); Luo & Weng (2011[Luo, L.-J. & Weng, J.-Q. (2011). Acta Cryst. E67, o3094.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N4

  • Mr = 164.22

  • Monoclinic, P 21 /c

  • a = 6.3452 (13) Å

  • b = 6.6731 (13) Å

  • c = 11.077 (2) Å

  • β = 95.61 (3)°

  • V = 466.78 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.985, Tmax = 0.992

  • 3739 measured reflections

  • 1076 independent reflections

  • 835 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.150

  • S = 1.05

  • 1076 reflections

  • 55 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N2i 0.97 2.57 3.427 (2) 147
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For related structures, see: Ma et al. (2007); Liu & Liu (2011); Luo & Weng (2011).

Experimental top

Piperazine (25 mmol) and triethylamine (50 mmol), dissolved in 20 ml 95% of ethanol, was added dropwise to the stirred solution of chloroacetonitrile (50 mmol) at reflux. The mixture was stirred for 8 h at reflux. The mixture was stirred overnight at room temperature, evaporated in vacuum and the residue was purified by recrystallization from ethanol to give the title compound. Colourless blocks were grown from dichloromethane/ethanol solution.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing for (I).
2,2'-(Piperazine-1,4-diyl)diacetonitrile top
Crystal data top
C8H12N4F(000) = 176
Mr = 164.22Dx = 1.168 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.3452 (13) ÅCell parameters from 1156 reflections
b = 6.6731 (13) Åθ = 3.1–27.8°
c = 11.077 (2) ŵ = 0.08 mm1
β = 95.61 (3)°T = 293 K
V = 466.78 (16) Å3Block, colorless
Z = 20.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1076 independent reflections
Radiation source: rotating anode835 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.032
ω scansθmax = 27.9°, θmin = 6.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 85
Tmin = 0.985, Tmax = 0.992k = 88
3739 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0937P)2 + 0.0176P]
where P = (Fo2 + 2Fc2)/3
1076 reflections(Δ/σ)max < 0.001
55 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C8H12N4V = 466.78 (16) Å3
Mr = 164.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.3452 (13) ŵ = 0.08 mm1
b = 6.6731 (13) ÅT = 293 K
c = 11.077 (2) Å0.20 × 0.18 × 0.10 mm
β = 95.61 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
1076 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
835 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.992Rint = 0.032
3739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.05Δρmax = 0.10 e Å3
1076 reflectionsΔρmin = 0.15 e Å3
55 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06045 (14)0.54542 (14)0.12377 (8)0.0464 (4)
N20.3536 (2)0.9796 (2)0.16532 (15)0.0904 (6)
C10.21559 (17)0.52728 (19)0.04400 (11)0.0497 (4)
H1A0.28230.41430.00780.060*
H1B0.32490.60360.09100.060*
C20.10710 (17)0.65762 (18)0.05439 (11)0.0499 (4)
H2A0.04740.77460.01840.060*
H2B0.20950.70300.10790.060*
C30.1569 (2)0.6568 (2)0.22683 (12)0.0584 (4)
H3A0.25620.57010.27410.070*
H3B0.04760.69450.27790.070*
C40.2700 (2)0.8402 (2)0.19376 (13)0.0647 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0471 (6)0.0463 (6)0.0461 (5)0.0023 (4)0.0062 (4)0.0010 (4)
N20.0816 (10)0.0743 (10)0.1129 (13)0.0215 (7)0.0029 (9)0.0028 (8)
C10.0410 (6)0.0516 (7)0.0570 (7)0.0054 (4)0.0062 (5)0.0018 (5)
C20.0465 (6)0.0479 (7)0.0561 (7)0.0087 (4)0.0092 (5)0.0032 (5)
C30.0657 (8)0.0575 (8)0.0512 (7)0.0009 (6)0.0013 (5)0.0049 (5)
C40.0592 (8)0.0618 (9)0.0707 (9)0.0035 (6)0.0057 (6)0.0112 (7)
Geometric parameters (Å, º) top
N1—C31.4471 (16)C1—H1B0.9700
N1—C21.4567 (15)C2—H2A0.9700
N1—C1i1.4680 (14)C2—H2B0.9700
N2—C41.1305 (19)C3—C41.4824 (19)
C1—N1i1.4681 (14)C3—H3A0.9700
C1—C21.5071 (17)C3—H3B0.9700
C1—H1A0.9700
C3—N1—C2112.51 (10)C1—C2—H2A109.6
C3—N1—C1i112.82 (9)N1—C2—H2B109.6
C2—N1—C1i110.49 (9)C1—C2—H2B109.6
N1i—C1—C2109.89 (9)H2A—C2—H2B108.2
N1i—C1—H1A109.7N1—C3—C4114.00 (10)
C2—C1—H1A109.7N1—C3—H3A108.8
N1i—C1—H1B109.7C4—C3—H3A108.8
C2—C1—H1B109.7N1—C3—H3B108.8
H1A—C1—H1B108.2C4—C3—H3B108.8
N1—C2—C1110.06 (9)H3A—C3—H3B107.6
N1—C2—H2A109.6N2—C4—C3178.07 (16)
C3—N1—C2—C1174.46 (8)C2—N1—C3—C464.42 (14)
C1i—N1—C2—C158.45 (13)C1i—N1—C3—C461.41 (14)
N1i—C1—C2—N158.10 (13)N1—C3—C4—N213 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2ii0.972.573.427 (2)147
Symmetry code: (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12N4
Mr164.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.3452 (13), 6.6731 (13), 11.077 (2)
β (°) 95.61 (3)
V3)466.78 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.985, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3739, 1076, 835
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.150, 1.05
No. of reflections1076
No. of parameters55
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.15

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2i0.972.573.427 (2)147
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Doctoral Research Fund of Henan University of Traditional Chinese Medicine.

References

First citationLiu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLuo, L.-J. & Weng, J.-Q. (2011). Acta Cryst. E67, o3094.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, H.-F., Jia, H.-S., Qian, Y., Wen, F. & Chen, B.-L. (2007). Acta Cryst. E63, o311–o312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds