organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Hy­dr­oxy-3-meth­­oxy­phen­yl)-1H-benzimidazol-3-ium perchlorate

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli_2000@163.com

(Received 12 May 2012; accepted 22 May 2012; online 31 May 2012)

In the title mol­ecular salt, C14H13N2O2+·ClO4, the ring systems in the cation are almost coplanar [dihedral angle = 5.53 (13)°]. Intra­molecular N—H⋯O and O—H⋯O hydrogen bonds generate S(6) and S(5) rings, respectively. In the crystal, the two H atoms involved in the intra­molecular hydrogen bonds also participate in inter­molecular links to acceptor O atoms of the perchlorate anions. A simple inter­molecular N—H⋯O bond also occurs. Together, these form a double-chain structure along [101].

Related literature

For a related structure, see: Yang et al. (2010[Yang, X. P., Jones, R. A., Wiester, M. J., Oye, M. M. & Wong, W. K. (2010). Cryst. Growth Des. 8, 3430-3436.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N2O2+·ClO4

  • Mr = 340.71

  • Monoclinic, P 21 /c

  • a = 7.7698 (16) Å

  • b = 20.462 (4) Å

  • c = 9.856 (2) Å

  • β = 113.09 (3)°

  • V = 1441.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.50 × 0.45 × 0.42 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.864, Tmax = 0.884

  • 13683 measured reflections

  • 3285 independent reflections

  • 2025 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.03

  • 3285 reflections

  • 218 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 (1) 2.20 (3) 2.635 (3) 114 (3)
O1—H1⋯O4i 0.82 (1) 2.13 (2) 2.869 (3) 151 (3)
N1—H101⋯O1 0.90 (1) 2.12 (3) 2.660 (3) 118 (3)
N1—H101⋯O5 0.90 (1) 2.04 (2) 2.819 (3) 144 (3)
N2—H102⋯O3ii 0.89 (1) 2.06 (2) 2.857 (4) 149 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an unexpected product during the process of preparing the N,N'-phenyl-bis(3-methoxysalicylaldimine) and Ce complex. We speculate that the title ligand was produced form the decomposition of N,N'-phenyl-bis(3-methoxysalicylaldimine). A similar ligand and Yb cation constructed metallic cluster has been reproted by Yang's group (Yang et al. 2010).

In the title compound, [C14H13N2O2][ClO4], the phenyl ring and benzimidazol ring are almost conplane with small dihedral angle of 5.517 (1) ° (Figure 1). Intermolecular N—H···O and O—H···0 hydrogen bonds link these protonated ligands and perchlorate anions to form double chain structure along [101] (Figure 2, Table 1).

Related literature top

For a related structure, see: Yang et al. (2010).

Experimental top

A solution of N,N'-phenyl-bis(3-methoxysalicylaldimine) (0.1502 g, 0.4 mmol) in 10 mL CH2Cl2, was added dropwise to a solution of [Ce(ClO4)3]˙9H2O (0.1984 g, 0.4 mmol) in 10 mL of CH3OH solution, after then the mixsure was keeping stir about 12h. Pale brown blocks were obtained after seven days. Elemental Anal. Calc. for C14H13ClN2O6: C, 49.35; H, 3.85; Cl, 10.41; N, 8.22; O, 28.17 wt%, Found: C, 49.32; H, 3.86; Cl, 10.40; N, 8.24 O, 28.15 wt%.

Refinement top

C-bound H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 / 0.96 Å (aromatic / methyl) and Uiso(H) = 1.2 \ 1.5Ueq(C). H atoms attached to N and O atoms were located in a differece Fourier map and refined with a restraint of N—H = 0.90 (1) Å and O—H = 0.82 (1), and with Uiso(H) = 1.5Ueq(N and O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The double chain structure.
2-(2-Hydroxy-3-methoxyphenyl)-1H-benzimidazol-3-ium perchlorate top
Crystal data top
C14H13N2O2+·ClO4F(000) = 704
Mr = 340.71Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7910 reflections
a = 7.7698 (16) Åθ = 3.0–27.4°
b = 20.462 (4) ŵ = 0.30 mm1
c = 9.856 (2) ÅT = 293 K
β = 113.09 (3)°Block, colorless
V = 1441.4 (5) Å30.50 × 0.45 × 0.42 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3285 independent reflections
Radiation source: fine-focus sealed tube2025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 109
Tmin = 0.864, Tmax = 0.884k = 2626
13683 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.5284P]
where P = (Fo2 + 2Fc2)/3
3285 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.37 e Å3
15 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H13N2O2+·ClO4V = 1441.4 (5) Å3
Mr = 340.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7698 (16) ŵ = 0.30 mm1
b = 20.462 (4) ÅT = 293 K
c = 9.856 (2) Å0.50 × 0.45 × 0.42 mm
β = 113.09 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3285 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2025 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.884Rint = 0.061
13683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05115 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
3285 reflectionsΔρmin = 0.32 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. isor 0.01 o5 o6 dfix 0.90 0.01 h101 n1 h102 n2 dfix 0.82 0.01 o1 h1 Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2919 (3)0.54938 (10)0.6641 (2)0.0448 (5)
H10.318 (5)0.5726 (15)0.737 (3)0.067*
O20.1478 (3)0.66205 (11)0.6962 (2)0.0536 (6)
O30.8344 (4)0.46040 (16)0.9925 (3)0.0933 (10)
O40.5840 (4)0.41460 (17)1.0309 (3)0.0886 (9)
O50.5714 (4)0.43412 (17)0.7935 (2)0.0900 (10)
O60.7608 (6)0.35259 (16)0.9385 (4)0.1203 (13)
C10.3647 (4)0.39510 (13)0.4381 (3)0.0348 (6)
C20.4842 (4)0.34335 (15)0.5008 (3)0.0451 (7)
H20.55250.34040.60200.054*
C30.4962 (4)0.29644 (16)0.4046 (4)0.0528 (8)
H30.57260.26030.44240.063*
C40.3972 (4)0.30136 (17)0.2519 (4)0.0556 (8)
H40.41260.26920.19100.067*
C50.2779 (5)0.35259 (17)0.1898 (3)0.0540 (8)
H50.21190.35590.08840.065*
C60.2609 (4)0.39922 (14)0.2863 (3)0.0401 (6)
C70.1917 (4)0.48632 (14)0.3912 (3)0.0357 (6)
C80.1067 (4)0.54718 (13)0.4073 (3)0.0361 (6)
C90.0326 (4)0.57649 (15)0.2837 (3)0.0458 (7)
H90.07220.55610.19210.055*
C100.1100 (4)0.63489 (16)0.2979 (3)0.0513 (8)
H100.20250.65370.21560.062*
C110.0525 (4)0.66657 (16)0.4331 (3)0.0481 (7)
H110.10350.70680.44070.058*
C120.0804 (4)0.63794 (14)0.5558 (3)0.0412 (7)
C130.1614 (4)0.57819 (14)0.5442 (3)0.0371 (6)
C140.0861 (5)0.72523 (17)0.7194 (4)0.0610 (9)
H14A0.12560.75730.66650.091*
H14B0.13920.73530.82280.091*
H14C0.04790.72550.68450.091*
Cl10.68517 (11)0.41471 (4)0.93839 (7)0.0463 (2)
N10.3185 (3)0.45039 (11)0.4985 (2)0.0351 (5)
H1010.367 (4)0.4594 (16)0.5954 (13)0.053*
N20.1566 (4)0.45555 (13)0.2634 (2)0.0442 (6)
H1020.079 (4)0.4709 (17)0.177 (2)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0481 (12)0.0439 (12)0.0338 (9)0.0034 (10)0.0068 (9)0.0052 (8)
O20.0597 (14)0.0452 (13)0.0546 (12)0.0044 (11)0.0210 (11)0.0124 (10)
O30.0832 (19)0.114 (3)0.0514 (14)0.0493 (18)0.0079 (13)0.0054 (15)
O40.0807 (19)0.135 (3)0.0592 (15)0.0109 (19)0.0376 (15)0.0040 (16)
O50.0704 (18)0.139 (3)0.0349 (12)0.0005 (18)0.0075 (11)0.0044 (14)
O60.186 (4)0.062 (2)0.146 (3)0.038 (2)0.100 (3)0.0105 (19)
C10.0364 (14)0.0327 (15)0.0362 (12)0.0054 (11)0.0151 (12)0.0020 (11)
C20.0398 (16)0.0443 (18)0.0456 (15)0.0021 (13)0.0107 (13)0.0011 (13)
C30.0423 (17)0.0423 (19)0.072 (2)0.0015 (14)0.0206 (16)0.0054 (15)
C40.0515 (19)0.055 (2)0.0638 (19)0.0042 (16)0.0265 (17)0.0215 (16)
C50.058 (2)0.059 (2)0.0426 (15)0.0010 (17)0.0173 (15)0.0135 (14)
C60.0444 (16)0.0398 (17)0.0359 (13)0.0059 (12)0.0155 (12)0.0038 (11)
C70.0386 (15)0.0365 (15)0.0295 (12)0.0064 (12)0.0106 (11)0.0014 (10)
C80.0355 (14)0.0323 (15)0.0386 (13)0.0028 (12)0.0123 (11)0.0020 (11)
C90.0497 (17)0.0418 (18)0.0381 (14)0.0027 (14)0.0089 (13)0.0052 (12)
C100.0509 (19)0.0452 (19)0.0512 (17)0.0056 (15)0.0129 (15)0.0152 (14)
C110.0478 (18)0.0363 (17)0.0629 (18)0.0025 (14)0.0245 (16)0.0070 (14)
C120.0423 (16)0.0353 (16)0.0492 (15)0.0056 (12)0.0214 (14)0.0032 (12)
C130.0330 (14)0.0363 (16)0.0382 (13)0.0067 (12)0.0100 (11)0.0022 (11)
C140.069 (2)0.044 (2)0.075 (2)0.0003 (17)0.0338 (19)0.0128 (17)
Cl10.0494 (4)0.0493 (4)0.0333 (3)0.0014 (4)0.0086 (3)0.0021 (3)
N10.0388 (12)0.0355 (13)0.0277 (10)0.0017 (10)0.0094 (10)0.0003 (9)
N20.0529 (15)0.0443 (15)0.0278 (10)0.0031 (12)0.0075 (11)0.0012 (9)
Geometric parameters (Å, º) top
O1—C131.353 (3)C6—N21.376 (4)
O1—H10.816 (10)C7—N21.337 (3)
O2—C121.365 (3)C7—N11.346 (3)
O2—C141.428 (4)C7—C81.447 (4)
O3—Cl11.420 (3)C8—C131.398 (4)
O4—Cl11.419 (3)C8—C91.408 (4)
O5—Cl11.410 (2)C9—C101.369 (4)
O6—Cl11.400 (3)C9—H90.9300
C1—C21.384 (4)C10—C111.389 (4)
C1—N11.389 (3)C10—H100.9300
C1—C61.396 (4)C11—C121.375 (4)
C2—C31.378 (4)C11—H110.9300
C2—H20.9300C12—C131.400 (4)
C3—C41.400 (4)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.374 (5)C14—H14C0.9600
C4—H40.9300N1—H1010.897 (10)
C5—C61.389 (4)N2—H1020.885 (10)
C5—H50.9300
C13—O1—H1111 (3)C9—C10—H10119.5
C12—O2—C14118.0 (3)C11—C10—H10119.5
C2—C1—N1132.2 (3)C12—C11—C10119.5 (3)
C2—C1—C6122.0 (3)C12—C11—H11120.2
N1—C1—C6105.8 (2)C10—C11—H11120.2
C3—C2—C1116.1 (3)O2—C12—C11126.5 (3)
C3—C2—H2121.9O2—C12—C13113.1 (3)
C1—C2—H2121.9C11—C12—C13120.5 (3)
C2—C3—C4122.2 (3)O1—C13—C8119.0 (3)
C2—C3—H3118.9O1—C13—C12121.1 (2)
C4—C3—H3118.9C8—C13—C12119.9 (3)
C5—C4—C3121.6 (3)O2—C14—H14A109.5
C5—C4—H4119.2O2—C14—H14B109.5
C3—C4—H4119.2H14A—C14—H14B109.5
C4—C5—C6116.6 (3)O2—C14—H14C109.5
C4—C5—H5121.7H14A—C14—H14C109.5
C6—C5—H5121.7H14B—C14—H14C109.5
N2—C6—C5132.1 (3)O6—Cl1—O5110.6 (2)
N2—C6—C1106.4 (2)O6—Cl1—O4109.7 (2)
C5—C6—C1121.5 (3)O5—Cl1—O4111.48 (18)
N2—C7—N1107.4 (2)O6—Cl1—O3108.5 (2)
N2—C7—C8125.1 (2)O5—Cl1—O3106.87 (18)
N1—C7—C8127.5 (2)O4—Cl1—O3109.64 (19)
C13—C8—C9118.8 (3)C7—N1—C1109.9 (2)
C13—C8—C7121.2 (2)C7—N1—H101127 (2)
C9—C8—C7120.0 (2)C1—N1—H101123 (2)
C10—C9—C8120.2 (3)C7—N2—C6110.5 (2)
C10—C9—H9119.9C7—N2—H102123 (2)
C8—C9—H9119.9C6—N2—H102126 (2)
C9—C10—C11121.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.82 (1)2.20 (3)2.635 (3)114 (3)
O1—H1···O4i0.82 (1)2.13 (2)2.869 (3)151 (3)
N1—H101···O10.90 (1)2.12 (3)2.660 (3)118 (3)
N1—H101···O50.90 (1)2.04 (2)2.819 (3)144 (3)
N2—H102···O3ii0.89 (1)2.06 (2)2.857 (4)149 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC14H13N2O2+·ClO4
Mr340.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7698 (16), 20.462 (4), 9.856 (2)
β (°) 113.09 (3)
V3)1441.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.50 × 0.45 × 0.42
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.864, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
13683, 3285, 2025
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.03
No. of reflections3285
No. of parameters218
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.816 (10)2.20 (3)2.635 (3)114 (3)
O1—H1···O4i0.816 (10)2.13 (2)2.869 (3)151 (3)
N1—H101···O10.897 (10)2.12 (3)2.660 (3)118 (3)
N1—H101···O50.897 (10)2.04 (2)2.819 (3)144 (3)
N2—H102···O3ii0.885 (10)2.06 (2)2.857 (4)149 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010td03) and Heilongjiang University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X. P., Jones, R. A., Wiester, M. J., Oye, M. M. & Wong, W. K. (2010). Cryst. Growth Des. 8, 3430–3436.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds