metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­tri­ethyl­ammonium tetra­chlorido­ferrate(III)

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com

(Received 13 May 2012; accepted 20 May 2012; online 26 May 2012)

In the title mol­ecular salt, (C13H22N)[FeCl4], three of the chloride ions of the tetra­hedral FeIII-containing anion are disordered over two orientations in a 0.656 (11):0.344 (11) ratio. In the crystal, there are no identifiable directional inter­actions between cations and anions except for Coulombic forces.

Related literature

For background to mol­ecular–ionic ferroelectrics, see: Zhang et al. (2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H22N)[FeCl4]

  • Mr = 389.97

  • Orthorhombic, P b c a

  • a = 15.514 (3) Å

  • b = 15.021 (3) Å

  • c = 16.155 (3) Å

  • V = 3764.7 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.655, Tmax = 0.734

  • 32945 measured reflections

  • 3691 independent reflections

  • 2364 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.170

  • S = 1.04

  • 3691 reflections

  • 204 parameters

  • 156 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—Cl1′ 2.178 (4)
Fe1—Cl2′ 2.211 (7)
Fe1—Cl3′ 2.256 (5)
Fe1—Cl4 2.1821 (17)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our lab, we has been exploring simple molecular-ionic componds which have potential phase-transition properties. (Zhang et al., 2010). Herein, the title compound has been synthesized and its crystal structure is reported.

The ions of the title compound,(C13H22N+). FeCl-4 crystallize in the orthorhombic Pbca space group, an asymmetric unit consists of a tetrachloroferrate anion unit, which contains three disorded Cl1,Cl2,Cl3 atoms with a ratio in 1: 1, and benzyltriethylammonium cations (Sheme 1). (Fig 1). In the anion,the bond distances of Fe–Cl being in the range of 2.083 (7)–2.210 (8)? and the bond angles of Cl–Fe–Cl being in the range of 93.9 (7)–124.7 (4) °, while the bond distances of disorded Fe—Cl being in the range of 2.178 (4)–2.211 (7)? and the bond angles of disoeded Cl–Fe–Cl range from 90.7 to 127.9 °, which means a largely deviation to the ideal structure.In the structure,the benzyltriethylammonium cations interact with the FeCl-4anion through non-covalent interaction-static attracting forces like Coulomb and Van der Waals forces to complete a network structure.

Related literature top

For background to molecular–ionic ferroelectrics, see: Zhang et al. (2010).

Experimental top

In room temperature benzyltriethylammoniumchlorine (10 mmol, 2.28 g) were dissolved in 30 ml water, then a solution with FeCl3.6H2O (5 mmol, 1.35 g) and excessivehydrochloric acidwas dropped slowly into the previous solution with properly sirring. An orange solid appeared immediately and the solid was collected by filtration. Orange blocks were obtained by the slow evaporation of the above filtrate after a week in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions(C—H = 0.93 Å for Csp2 atoms and C—H = 0.96 Å and 0.97 Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Benzyltriethylammonium tetrachloridoferrate(III) top
Crystal data top
(C13H22N)[FeCl4]F(000) = 1608
Mr = 389.97Dx = 1.376 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 3.0–26°
a = 15.514 (3) ŵ = 1.36 mm1
b = 15.021 (3) ÅT = 293 K
c = 16.155 (3) ÅBlock, orange
V = 3764.7 (13) Å30.26 × 0.24 × 0.20 mm
Z = 8
Data collection top
Rigaku Mercury2 CCD
diffractometer
3691 independent reflections
Radiation source: fine-focus sealed tube2364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD_Profile_fitting scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.655, Tmax = 0.734l = 1919
32945 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0625P)2 + 5.6146P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.009
3691 reflectionsΔρmax = 0.73 e Å3
204 parametersΔρmin = 0.38 e Å3
156 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0092 (7)
Crystal data top
(C13H22N)[FeCl4]V = 3764.7 (13) Å3
Mr = 389.97Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.514 (3) ŵ = 1.36 mm1
b = 15.021 (3) ÅT = 293 K
c = 16.155 (3) Å0.26 × 0.24 × 0.20 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
3691 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2364 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.734Rint = 0.082
32945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068156 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
3691 reflectionsΔρmin = 0.38 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7598 (3)0.8752 (4)0.3510 (3)0.0664 (14)
H1A0.81890.86040.33690.080*
H1B0.72310.85130.30780.080*
C20.7509 (4)0.9749 (4)0.3512 (4)0.0816 (17)
H2A0.69200.99060.36190.122*
H2B0.76790.99800.29820.122*
H2C0.78710.99960.39350.122*
C30.6454 (3)0.8524 (3)0.4582 (3)0.0585 (13)
H3A0.63160.81890.50780.070*
H3B0.64370.91500.47260.070*
C40.5764 (3)0.8349 (4)0.3949 (4)0.0789 (17)
H4A0.58730.87000.34640.118*
H4B0.52120.85060.41750.118*
H4C0.57650.77290.38040.118*
C50.7951 (3)0.8604 (4)0.5021 (3)0.0677 (14)
H5A0.78250.82540.55110.081*
H5B0.78130.92200.51460.081*
C60.8915 (3)0.8539 (4)0.4842 (4)0.0879 (19)
H6A0.90400.79710.45970.132*
H6B0.92320.86010.53490.132*
H6C0.90790.90040.44660.132*
C70.7465 (3)0.7295 (3)0.4183 (3)0.0590 (13)
H7A0.70850.71230.37330.071*
H7B0.80510.71760.40060.071*
C80.7268 (3)0.6716 (3)0.4920 (3)0.0574 (12)
C90.7909 (4)0.6451 (4)0.5460 (4)0.0751 (15)
H90.84700.66480.53770.090*
C100.7728 (5)0.5891 (4)0.6129 (4)0.0880 (18)
H100.81640.57150.64880.106*
C110.6901 (5)0.5607 (4)0.6247 (4)0.0864 (18)
H110.67710.52450.66970.104*
C120.6270 (4)0.5847 (4)0.5717 (5)0.0929 (19)
H120.57110.56420.58000.111*
C130.6447 (3)0.6390 (4)0.5060 (4)0.0738 (15)
H130.60050.65440.46980.089*
Cl10.0663 (7)0.7414 (8)0.2546 (8)0.116 (3)0.344 (11)
Cl20.1300 (9)0.7070 (9)0.3047 (8)0.089 (3)0.344 (11)
Cl2'0.1493 (4)0.6778 (5)0.2948 (5)0.0878 (15)0.656 (11)
Cl30.0269 (6)0.5423 (8)0.1865 (6)0.109 (2)0.344 (11)
Cl40.02775 (10)0.58556 (13)0.41086 (9)0.0936 (6)
Cl1'0.0875 (3)0.7000 (5)0.2274 (3)0.1154 (16)0.656 (11)
Cl3'0.0285 (3)0.4954 (5)0.2216 (4)0.1169 (19)0.656 (11)
Fe10.01578 (5)0.62672 (6)0.28825 (4)0.0672 (3)
N10.7371 (2)0.8292 (3)0.4325 (2)0.0527 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (3)0.081 (4)0.053 (3)0.003 (3)0.013 (2)0.000 (3)
C20.085 (4)0.081 (4)0.079 (4)0.000 (3)0.004 (3)0.010 (3)
C30.045 (2)0.064 (3)0.066 (3)0.008 (2)0.007 (2)0.019 (3)
C40.053 (3)0.094 (4)0.090 (4)0.007 (3)0.007 (3)0.019 (3)
C50.059 (3)0.082 (4)0.062 (3)0.009 (3)0.006 (2)0.014 (3)
C60.052 (3)0.109 (5)0.103 (5)0.011 (3)0.006 (3)0.004 (4)
C70.053 (3)0.071 (3)0.053 (3)0.005 (2)0.009 (2)0.014 (2)
C80.051 (3)0.066 (3)0.055 (3)0.005 (2)0.005 (2)0.013 (2)
C90.065 (3)0.088 (4)0.072 (4)0.002 (3)0.002 (3)0.000 (3)
C100.099 (5)0.096 (5)0.070 (4)0.011 (4)0.012 (3)0.001 (3)
C110.105 (5)0.082 (4)0.072 (4)0.011 (4)0.015 (4)0.006 (3)
C120.080 (4)0.091 (5)0.108 (5)0.006 (4)0.016 (4)0.010 (4)
C130.056 (3)0.081 (4)0.085 (4)0.002 (3)0.003 (3)0.003 (3)
Cl10.099 (5)0.130 (6)0.120 (5)0.050 (4)0.052 (4)0.027 (4)
Cl20.095 (6)0.112 (6)0.060 (4)0.056 (4)0.003 (4)0.003 (4)
Cl2'0.079 (2)0.110 (4)0.075 (2)0.026 (2)0.0146 (16)0.000 (2)
Cl30.125 (4)0.123 (5)0.080 (4)0.015 (4)0.004 (4)0.042 (4)
Cl40.0898 (11)0.1249 (14)0.0659 (9)0.0371 (10)0.0069 (8)0.0092 (9)
Cl1'0.096 (2)0.153 (4)0.097 (3)0.017 (2)0.0180 (19)0.018 (2)
Cl3'0.103 (2)0.142 (4)0.105 (3)0.004 (2)0.010 (2)0.063 (3)
Fe10.0567 (5)0.0958 (7)0.0492 (4)0.0014 (4)0.0059 (3)0.0069 (4)
N10.046 (2)0.064 (3)0.048 (2)0.0034 (18)0.0056 (17)0.0143 (19)
Geometric parameters (Å, º) top
C1—C21.503 (8)C7—N11.522 (6)
C1—N11.528 (6)C7—H7A0.9700
C1—H1A0.9700C7—H7B0.9700
C1—H1B0.9700C8—C91.381 (7)
C2—H2A0.9600C8—C131.384 (7)
C2—H2B0.9600C9—C101.397 (8)
C2—H2C0.9600C9—H90.9300
C3—C41.505 (7)C10—C111.366 (9)
C3—N11.521 (5)C10—H100.9300
C3—H3A0.9700C11—C121.350 (9)
C3—H3B0.9700C11—H110.9300
C4—H4A0.9600C12—C131.367 (8)
C4—H4B0.9600C12—H120.9300
C4—H4C0.9600C13—H130.9300
C5—N11.516 (6)Cl1—Fe12.210 (8)
C5—C61.526 (7)Cl2—Fe12.160 (12)
C5—H5A0.9700Cl3—Fe12.083 (7)
C5—H5B0.9700Fe1—Cl1'2.178 (4)
C6—H6A0.9600Fe1—Cl2'2.211 (7)
C6—H6B0.9600Fe1—Cl3'2.256 (5)
C6—H6C0.9600Fe1—Cl42.1821 (17)
C7—C81.506 (7)
C2—C1—N1115.3 (4)C13—C8—C7121.3 (5)
C2—C1—H1A108.4C8—C9—C10121.2 (5)
N1—C1—H1A108.4C8—C9—H9119.4
C2—C1—H1B108.4C10—C9—H9119.4
N1—C1—H1B108.4C11—C10—C9118.9 (6)
H1A—C1—H1B107.5C11—C10—H10120.5
C1—C2—H2A109.5C9—C10—H10120.5
C1—C2—H2B109.5C12—C11—C10120.7 (6)
H2A—C2—H2B109.5C12—C11—H11119.7
C1—C2—H2C109.5C10—C11—H11119.7
H2A—C2—H2C109.5C11—C12—C13120.4 (6)
H2B—C2—H2C109.5C11—C12—H12119.8
C4—C3—N1116.1 (4)C13—C12—H12119.8
C4—C3—H3A108.3C12—C13—C8121.5 (6)
N1—C3—H3A108.3C12—C13—H13119.3
C4—C3—H3B108.3C8—C13—H13119.3
N1—C3—H3B108.3Cl3—Fe1—Cl1'90.7 (3)
H3A—C3—H3B107.4Cl3—Fe1—Cl2111.6 (4)
C3—C4—H4A109.5Cl1'—Fe1—Cl2112.2 (5)
C3—C4—H4B109.5Cl3—Fe1—Cl4124.7 (4)
H4A—C4—H4B109.5Cl1'—Fe1—Cl4108.99 (14)
C3—C4—H4C109.5Cl2—Fe1—Cl4107.5 (4)
H4A—C4—H4C109.5Cl3—Fe1—Cl2'99.9 (3)
H4B—C4—H4C109.5Cl1'—Fe1—Cl2'122.4 (3)
N1—C5—C6114.9 (4)Cl2—Fe1—Cl2'14.5 (4)
N1—C5—H5A108.5Cl4—Fe1—Cl2'110.2 (2)
C6—C5—H5A108.5Cl3—Fe1—Cl1109.1 (4)
N1—C5—H5B108.5Cl1'—Fe1—Cl121.8 (3)
C6—C5—H5B108.5Cl2—Fe1—Cl193.9 (7)
H5A—C5—H5B107.5Cl4—Fe1—Cl1105.4 (2)
C5—C6—H6A109.5Cl2'—Fe1—Cl1106.3 (5)
C5—C6—H6B109.5Cl3—Fe1—Cl3'23.7 (2)
H6A—C6—H6B109.5Cl1'—Fe1—Cl3'106.90 (18)
C5—C6—H6C109.5Cl2—Fe1—Cl3'118.3 (4)
H6A—C6—H6C109.5Cl4—Fe1—Cl3'102.3 (2)
H6B—C6—H6C109.5Cl2'—Fe1—Cl3'104.12 (19)
C8—C7—N1115.5 (4)Cl1—Fe1—Cl3'127.9 (4)
C8—C7—H7A108.4C5—N1—C3106.3 (3)
N1—C7—H7A108.4C5—N1—C7111.0 (4)
C8—C7—H7B108.4C3—N1—C7110.9 (3)
N1—C7—H7B108.4C5—N1—C1111.2 (4)
H7A—C7—H7B107.5C3—N1—C1110.3 (4)
C9—C8—C13117.2 (5)C7—N1—C1107.1 (3)
C9—C8—C7121.4 (5)

Experimental details

Crystal data
Chemical formula(C13H22N)[FeCl4]
Mr389.97
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.514 (3), 15.021 (3), 16.155 (3)
V3)3764.7 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.655, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
32945, 3691, 2364
Rint0.082
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.170, 1.04
No. of reflections3691
No. of parameters204
No. of restraints156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—Cl1'2.178 (4)Fe1—Cl3'2.256 (5)
Fe1—Cl2'2.211 (7)Fe1—Cl42.1821 (17)
 

Acknowledgements

The author thanks the Ordered Matter Science Research Centre, Southeast University.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds