organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-4-[1-(1-phenyl­ethyl­­idene)hydrazin-2-yl­­idene]-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Government College University, Faisalabad 38040, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and cDepartment of Chemistry, University of Gujrat, Gujrat 50781, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 13 May 2012; accepted 19 May 2012; online 31 May 2012)

In the title compound, C18H19N3O2S, the thia­zine ring adopts an envelope conformation, with the S atom displaced by 0.732 (1) Å from the other atoms of the ring. The phenyl ring is oriented at a dihedral angle of 79.33 (7)° with respect to the fused benzene ring. The conformations about the two double bonds in the R2C=N—N=C(CH3)Ar grouping are Z and E, respectively. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R22(8) and R22(12) loops, as parts of infinite chains along the a-axis direction.

Related literature

For related structures and further synthetic details, see: Shafiq et al. (2011a[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011a). Acta Cryst. E67, o2038.],b[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011b). Acta Cryst. E67, o2092.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O2S

  • Mr = 341.42

  • Monoclinic, P 21 /n

  • a = 9.7278 (3) Å

  • b = 12.4327 (3) Å

  • c = 14.2607 (4) Å

  • β = 100.725 (1)°

  • V = 1694.60 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.41 × 0.08 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.988

  • 16049 measured reflections

  • 4129 independent reflections

  • 2887 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.151

  • S = 1.00

  • 4127 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.43 3.390 (2) 170
C16—H16B⋯O2ii 0.97 2.52 3.481 (2) 171
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As part of our ongoing studies of benzothiazines, we now describe the title compound, which is related to 4-hydrazinylidene-1-ethyl-3H-2λ6,1-benzothiazine-2,2-dione and 6-bromo-1-methyl-4-[2-(4-methylbenzylidene) hydrazinylidene]-3H-2λ6,1-benzothiazine-2,2-dione. The aromatic and thiazine rings are oriented at dihedral angle of 10.31 (9)° and thiazine ring adopted sofa shape with r. m. s. deviavtion of about 0.2213 (12)° with the maximum deviation of from the S1 (0.3686 (10)Å) & N1 (0.2640 (11)Å). Thiazine ring showes total ring puckering amplitude QT = 0.5430 Å with (θ) = 55.02 ° (π) = 358.2638 ° (Cremer & Pople, 1975). Both the oxygen atoms of SO2 group are involved in accepting C—H···O type weak intermolecular hydrogen bonding interaction and produce two ring motifs represented as R22(8) & R22(12) (Table. 1, Fig. 2).

Related literature top

For related structures and further synthetic details, see: Shafiq et al. (2011a,b). For ring puckering parameters, see: Cremer & Pople (1975)

Experimental top

4-Hydrazinylidene-1- methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011a) was subjected to react with acetophenone according to literature procedure (Shafiq et al., 2011b). The product obtained was then recrystalized in ethylacetate under slow evaporation to obtain suitable crystal for diffraction studies.

Refinement top

All the C—H and H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for methyl group & C—H = 0.97 Å for methylene and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic & methylene and Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. The two reflections (0 0 2) & (0 1 1) were omitted in final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing showes the dimers formed through C—H···O hydrogen bonds, drawn using dashed lines.
1-Ethyl-4-[1-(1-phenylethylidene)hydrazin-2-ylidene]-3,4-dihydro- 1H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C18H19N3O2SF(000) = 720
Mr = 341.42Dx = 1.338 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4849 reflections
a = 9.7278 (3) Åθ = 2.4–26.1°
b = 12.4327 (3) ŵ = 0.21 mm1
c = 14.2607 (4) ÅT = 296 K
β = 100.725 (1)°Needle, colorless
V = 1694.60 (8) Å30.41 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4129 independent reflections
Radiation source: fine-focus sealed tube2887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.920, Tmax = 0.988k = 1616
16049 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.2125P]
where P = (Fo2 + 2Fc2)/3
4127 reflections(Δ/σ)max = 0.002
219 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H19N3O2SV = 1694.60 (8) Å3
Mr = 341.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7278 (3) ŵ = 0.21 mm1
b = 12.4327 (3) ÅT = 296 K
c = 14.2607 (4) Å0.41 × 0.08 × 0.06 mm
β = 100.725 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2887 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.988Rint = 0.035
16049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
4127 reflectionsΔρmin = 0.32 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78767 (5)0.93644 (4)1.05780 (3)0.04426 (17)
O10.85670 (16)1.03503 (13)1.08838 (12)0.0650 (4)
O20.71460 (14)0.88277 (12)1.12183 (10)0.0557 (4)
N10.68626 (18)0.95785 (12)0.95522 (11)0.0477 (4)
N20.89644 (17)0.66151 (14)0.96946 (13)0.0556 (4)
N31.02548 (17)0.65607 (14)1.03083 (13)0.0558 (5)
C10.62452 (18)0.86638 (14)0.90335 (12)0.0367 (4)
C20.49509 (19)0.87561 (16)0.84347 (14)0.0458 (5)
H20.44870.94140.83800.055*
C30.43489 (19)0.78866 (17)0.79221 (14)0.0496 (5)
H30.34870.79630.75180.059*
C40.50112 (19)0.69015 (17)0.80018 (14)0.0477 (5)
H40.45940.63110.76620.057*
C50.62979 (19)0.68026 (15)0.85904 (13)0.0428 (4)
H50.67440.61380.86450.051*
C60.69472 (16)0.76729 (14)0.91056 (12)0.0355 (4)
C70.83541 (17)0.75244 (15)0.96944 (13)0.0401 (4)
C80.90722 (18)0.84518 (16)1.02506 (14)0.0473 (5)
H8A0.96530.88200.98690.057*
H8B0.96770.81831.08210.057*
C91.1295 (2)0.62777 (15)0.99497 (15)0.0497 (5)
C101.26558 (19)0.62074 (14)1.06248 (13)0.0428 (4)
C111.3907 (2)0.6245 (2)1.03087 (17)0.0634 (6)
H111.39100.62870.96580.076*
C121.5168 (2)0.6219 (2)1.09532 (19)0.0724 (7)
H121.60070.62581.07310.087*
C131.5185 (2)0.61366 (18)1.19091 (17)0.0589 (6)
H131.60300.61081.23380.071*
C141.3945 (2)0.60965 (17)1.22303 (15)0.0534 (5)
H141.39510.60431.28820.064*
C151.2685 (2)0.61348 (15)1.15988 (14)0.0471 (5)
H151.18510.61121.18280.057*
C160.6440 (2)1.06836 (15)0.92463 (15)0.0509 (5)
H16A0.68421.11830.97450.061*
H16B0.54301.07420.91590.061*
C170.6891 (3)1.0986 (2)0.83489 (19)0.0788 (8)
H17A0.78931.09630.84400.118*
H17B0.65721.17010.81700.118*
H17C0.65001.04920.78540.118*
C181.1213 (3)0.6043 (3)0.89159 (19)0.0970 (10)
H18A1.02840.58110.86430.146*
H18B1.18680.54850.88440.146*
H18C1.14360.66810.85960.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0375 (3)0.0554 (3)0.0365 (3)0.00157 (19)0.00216 (19)0.0074 (2)
O10.0602 (9)0.0675 (10)0.0606 (10)0.0076 (7)0.0063 (8)0.0235 (8)
O20.0478 (8)0.0793 (10)0.0402 (8)0.0117 (7)0.0085 (6)0.0057 (7)
N10.0578 (10)0.0388 (8)0.0392 (9)0.0005 (7)0.0099 (7)0.0001 (7)
N20.0431 (9)0.0559 (10)0.0599 (11)0.0109 (7)0.0106 (8)0.0007 (9)
N30.0418 (9)0.0636 (11)0.0548 (11)0.0136 (8)0.0097 (8)0.0023 (9)
C10.0347 (9)0.0442 (10)0.0292 (8)0.0000 (7)0.0009 (7)0.0002 (7)
C20.0389 (10)0.0519 (11)0.0433 (10)0.0099 (8)0.0009 (8)0.0002 (9)
C30.0335 (9)0.0670 (13)0.0425 (11)0.0018 (8)0.0077 (8)0.0021 (10)
C40.0447 (10)0.0531 (11)0.0416 (11)0.0072 (8)0.0021 (8)0.0084 (9)
C50.0426 (9)0.0443 (10)0.0396 (10)0.0031 (7)0.0023 (8)0.0025 (8)
C60.0307 (8)0.0441 (10)0.0300 (8)0.0010 (7)0.0014 (6)0.0022 (7)
C70.0332 (9)0.0498 (10)0.0358 (9)0.0016 (7)0.0027 (7)0.0014 (8)
C80.0306 (9)0.0653 (12)0.0437 (11)0.0009 (8)0.0010 (8)0.0070 (9)
C90.0460 (11)0.0508 (11)0.0484 (12)0.0076 (8)0.0011 (9)0.0052 (9)
C100.0396 (10)0.0426 (10)0.0435 (10)0.0069 (7)0.0009 (8)0.0049 (8)
C110.0523 (13)0.0906 (17)0.0473 (12)0.0097 (11)0.0093 (10)0.0146 (12)
C120.0398 (11)0.1026 (19)0.0750 (17)0.0039 (11)0.0114 (11)0.0222 (14)
C130.0417 (11)0.0669 (14)0.0612 (14)0.0007 (9)0.0082 (10)0.0135 (11)
C140.0525 (12)0.0610 (12)0.0429 (11)0.0054 (9)0.0007 (9)0.0061 (10)
C150.0419 (10)0.0497 (11)0.0487 (11)0.0068 (8)0.0057 (9)0.0053 (9)
C160.0536 (12)0.0411 (10)0.0550 (12)0.0094 (8)0.0020 (10)0.0072 (9)
C170.111 (2)0.0568 (14)0.0637 (15)0.0098 (14)0.0021 (15)0.0094 (12)
C180.0702 (17)0.163 (3)0.0505 (15)0.0186 (19)0.0083 (13)0.0103 (18)
Geometric parameters (Å, º) top
S1—O21.4232 (15)C9—C101.487 (3)
S1—O11.4264 (15)C9—C181.490 (3)
S1—N11.6270 (16)C10—C111.376 (3)
S1—C81.7493 (19)C10—C151.387 (3)
N1—C11.427 (2)C11—C121.390 (3)
N1—C161.477 (2)C11—H110.9300
N2—C71.277 (2)C12—C131.364 (3)
N2—N31.392 (2)C12—H120.9300
N3—C91.266 (3)C13—C141.368 (3)
C1—C21.388 (2)C13—H130.9300
C1—C61.403 (2)C14—C151.380 (3)
C2—C31.373 (3)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—C41.379 (3)C16—C171.477 (3)
C3—H30.9300C16—H16A0.9700
C4—C51.377 (2)C16—H16B0.9700
C4—H40.9300C17—H17A0.9600
C5—C61.392 (3)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—C71.478 (2)C18—H18A0.9600
C7—C81.497 (3)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700
O2—S1—O1118.02 (10)N3—C9—C18123.7 (2)
O2—S1—N1111.22 (9)C10—C9—C18120.4 (2)
O1—S1—N1107.84 (9)C11—C10—C15118.41 (18)
O2—S1—C8107.66 (9)C11—C10—C9121.41 (19)
O1—S1—C8109.90 (9)C15—C10—C9120.15 (18)
N1—S1—C8100.84 (9)C10—C11—C12120.6 (2)
C1—N1—C16121.41 (15)C10—C11—H11119.7
C1—N1—S1117.52 (12)C12—C11—H11119.7
C16—N1—S1120.46 (13)C13—C12—C11120.5 (2)
C7—N2—N3114.08 (16)C13—C12—H12119.7
C9—N3—N2117.05 (18)C11—C12—H12119.7
C2—C1—C6119.40 (16)C12—C13—C14119.3 (2)
C2—C1—N1119.94 (16)C12—C13—H13120.3
C6—C1—N1120.64 (15)C14—C13—H13120.3
C3—C2—C1120.69 (17)C13—C14—C15120.7 (2)
C3—C2—H2119.7C13—C14—H14119.6
C1—C2—H2119.7C15—C14—H14119.6
C2—C3—C4120.59 (17)C14—C15—C10120.42 (19)
C2—C3—H3119.7C14—C15—H15119.8
C4—C3—H3119.7C10—C15—H15119.8
C5—C4—C3119.17 (17)N1—C16—C17112.46 (18)
C5—C4—H4120.4N1—C16—H16A109.1
C3—C4—H4120.4C17—C16—H16A109.1
C4—C5—C6121.62 (17)N1—C16—H16B109.1
C4—C5—H5119.2C17—C16—H16B109.1
C6—C5—H5119.2H16A—C16—H16B107.8
C5—C6—C1118.50 (15)C16—C17—H17A109.5
C5—C6—C7118.95 (15)C16—C17—H17B109.5
C1—C6—C7122.54 (15)H17A—C17—H17B109.5
N2—C7—C6119.48 (16)C16—C17—H17C109.5
N2—C7—C8120.71 (16)H17A—C17—H17C109.5
C6—C7—C8119.76 (15)H17B—C17—H17C109.5
C7—C8—S1111.91 (12)C9—C18—H18A109.5
C7—C8—H8A109.2C9—C18—H18B109.5
S1—C8—H8A109.2H18A—C18—H18B109.5
C7—C8—H8B109.2C9—C18—H18C109.5
S1—C8—H8B109.2H18A—C18—H18C109.5
H8A—C8—H8B107.9H18B—C18—H18C109.5
N3—C9—C10115.90 (18)
O2—S1—N1—C159.42 (16)C1—C6—C7—N2176.73 (18)
O1—S1—N1—C1169.72 (14)C5—C6—C7—C8179.76 (17)
C8—S1—N1—C154.52 (16)C1—C6—C7—C80.7 (3)
O2—S1—N1—C16111.72 (17)N2—C7—C8—S1153.81 (16)
O1—S1—N1—C1619.14 (19)C6—C7—C8—S128.8 (2)
C8—S1—N1—C16134.34 (16)O2—S1—C8—C764.98 (16)
C7—N2—N3—C9125.1 (2)O1—S1—C8—C7165.27 (14)
C16—N1—C1—C221.2 (3)N1—S1—C8—C751.62 (16)
S1—N1—C1—C2149.88 (15)N2—N3—C9—C10178.94 (16)
C16—N1—C1—C6157.43 (18)N2—N3—C9—C182.2 (3)
S1—N1—C1—C631.5 (2)N3—C9—C10—C11159.4 (2)
C6—C1—C2—C30.7 (3)C18—C9—C10—C1119.5 (3)
N1—C1—C2—C3179.27 (18)N3—C9—C10—C1518.7 (3)
C1—C2—C3—C40.8 (3)C18—C9—C10—C15162.4 (2)
C2—C3—C4—C51.1 (3)C15—C10—C11—C120.5 (3)
C3—C4—C5—C60.1 (3)C9—C10—C11—C12177.6 (2)
C4—C5—C6—C11.5 (3)C10—C11—C12—C131.2 (4)
C4—C5—C6—C7177.54 (17)C11—C12—C13—C141.0 (4)
C2—C1—C6—C51.8 (3)C12—C13—C14—C150.2 (3)
N1—C1—C6—C5179.60 (17)C13—C14—C15—C100.4 (3)
C2—C1—C6—C7177.25 (16)C11—C10—C15—C140.3 (3)
N1—C1—C6—C71.4 (3)C9—C10—C15—C14178.37 (18)
N3—N2—C7—C6177.29 (16)C1—N1—C16—C1769.1 (3)
N3—N2—C7—C85.3 (3)S1—N1—C16—C17120.06 (19)
C5—C6—C7—N22.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.433.390 (2)170
C16—H16B···O2ii0.972.523.481 (2)171
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H19N3O2S
Mr341.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.7278 (3), 12.4327 (3), 14.2607 (4)
β (°) 100.725 (1)
V3)1694.60 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.41 × 0.08 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.920, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
16049, 4129, 2887
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.151, 1.00
No. of reflections4127
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.433.390 (2)170
C16—H16B···O2ii0.972.523.481 (2)171
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+2.
 

Acknowledgements

MS acknowledges the Higher Education Commission of Pakistan for supporting PhD studies and for the provision of a grant to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011a). Acta Cryst. E67, o2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011b). Acta Cryst. E67, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds