organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(4-Chloro­phen­yl)-5-phenyl-2,3-di­hydro-1,3,4-oxa­diazol-3-yl]ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, Karnataka, India, and cSeQuent Scientific Limited, No: 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 May 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, C16H14ClN3O2, the 2,3-dihydro-1,3,4-oxadiazole ring [maximum deviation = 0.030 (1) Å] and the pyridine ring [maximum deviation = 0.012 (1) Å] are inclined slightly to one another, making a dihedral angle of 11.91 (5)°. The chloro-substituted phenyl ring is almost perpendicular to the 2,3-dihydro-1,3,4-oxadiazole and pyridine rings at dihedral angles of 86.86 (5) and 75.26 (5)°, respectively. In the crystal, ππ [centroid–centroid distance = 3.7311 (6) Å] and C—H⋯π inter­actions are observed.

Related literature

For the biological activity of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazo­line ring systems, see: Rakesh & Prabhakar (2009[Rakesh, R. S. & Prabhakar, Y. S. (2009). Der Pharma Chem. 1, 130-140.]); Priya et al. (2007[Priya, V. F., Girish, K. S. & Kalluraya, B. (2007). J. Chem. Sci. 119, 41-46.]); Bhatia & Gupta (2011[Bhatia, S. & Gupta, M. (2011). J. Chem. Pharm. Res. 3, 137-147.]); Vijesh et al. (2011[Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591-5597.]); Galil & Amr (2000[Galil, A. E. & Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49-58.]). For related structures, see: Yehye et al. (2010[Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2010). Acta Cryst. E66, o878.]); Ono et al. (2009[Ono, K., Tsukamoto, K. & Tomura, M. (2009). Acta Cryst. E65, o1873.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClN3O2

  • Mr = 315.75

  • Triclinic, [P \overline 1]

  • a = 5.8623 (2) Å

  • b = 10.9912 (5) Å

  • c = 12.2815 (5) Å

  • α = 68.214 (1)°

  • β = 84.707 (1)°

  • γ = 87.623 (1)°

  • V = 731.67 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.40 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.962

  • 19562 measured reflections

  • 5301 independent reflections

  • 4768 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.116

  • S = 1.02

  • 5301 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16ACg3i 0.98 2.65 3.4360 (13) 138
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oxadiazole, a five-membered heterocyclic nucleus, has attracted a wide attention of the chemists in search for the new therapeutic molecules. A number of therapeutic agents such as HIV-integrase inhibitor Raltegravir, a nitrofuran antibacterial Furamizole, antihypertensive agents like Tiodazosin and Nesapidil are based on the 1,3,4-oxadiazole moiety. The 3-acetyl-2,5-disubstituted-2,3- dihydro-1,3,4-oxadiazoline ring systems are associated with diverse biological properties such as analgesic, anti-inflammatory, anticancer, anti-HIV, antibacterial, antitubercular activities (Rakesh & Prabhakar, 2009; Priya et al., 2007; Bhatia & Gupta, 2011). Further, substituted pyridines have showed significant biological activities (Vijesh et al., 2011; Galil & Amr, 2000). Pyridine-derived pharmaceuticals include Atazanavir and Imatinib mesylate which are recommended for the treatment of HIV and chronic myelogenous leukemia respectively. Keeping in view of the therapeutic importance of 1,3,4-oxadiazoles and pyridines, we synthesized the title compound to study its crystal structure.

In the molecular structure (Fig. 1), the 2,3-dihydro-1,3,4-oxadiazole ring [O1/N2/N3/C6/C7, with a maximum deviation of 0.030 (1) Å at atom C7] and the pyridine ring [N1/C1–C5, with a maximum deviation of 0.012 (1) Å at atom C3 and C5] are slightly inclined to one another, making a dihedral angle of 11.91 (5)°. Meanwhile, the chloro-substituted phenyl ring (C8–C13) is almost perpendicular to the 2,3-dihydro-1,3,4-oxadiazole and pyridine rings at dihedral angles of 86.86 (5) and 75.26 (5)°, respectively. Bond lengths and angles are within normal ranges and are comparable to related structures (Yehye et al., 2010; Ono et al., 2009).

The crystal packing is shown in Fig. 2. ππ interactions are observed with centroid to centroid distance Cg1···Cg2 = 3.7311 (6) Å; symmetry code: 1 - x, 2 - y,1 - z. The crystal structure also features intermolecular C16—H16A···Cg3 (Table 1) interactions (Cg1, Cg2 and Cg3 are the centroids of O1/N2/N3/C6/C7, N1/C1–C5 and C8–C13 rings, respectively).

Related literature top

For the biological activity of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoline ring systems, see: Rakesh & Prabhakar (2009); Priya et al. (2007); Bhatia & Gupta (2011); Vijesh et al. (2011); Galil & Amr (2000). For related structures, see: Yehye et al. (2010); Ono et al. (2009). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Schiff base, N'-[(1E)-(4-chlorophenyl)methylene]-4- methylbenzohydrazide (0.5 g, 0.0018 mol) was refluxed with acetic anhydride (3 ml) for 1 h. After the completion of reaction, the excess acetic anhydride was distilled out at reduced pressure and the residue obtained was poured into ice cold water. The solid that was separated out was filtered, washed with water and dried. The crude product was recrystallized from hot ethanol in the form of yellow blocks (0.38 g, 76%). M.p.: 395–397 K.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95 or 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The same Uij parameter was used for atoms pair N1/C3. Three outliers (-2 0 2, -2 0 1 and -2 1 1) were omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the a axis.
1-[2-(4-Chlorophenyl)-5-phenyl-2,3-dihydro-1,3,4-oxadiazol-3-yl]ethanone top
Crystal data top
C16H14ClN3O2Z = 2
Mr = 315.75F(000) = 328
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8623 (2) ÅCell parameters from 9976 reflections
b = 10.9912 (5) Åθ = 3.1–32.6°
c = 12.2815 (5) ŵ = 0.27 mm1
α = 68.214 (1)°T = 100 K
β = 84.707 (1)°Block, yellow
γ = 87.623 (1)°0.40 × 0.22 × 0.14 mm
V = 731.67 (5) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5301 independent reflections
Radiation source: fine-focus sealed tube4768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.899, Tmax = 0.962k = 1616
19562 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.3111P]
where P = (Fo2 + 2Fc2)/3
5301 reflections(Δ/σ)max = 0.003
195 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C16H14ClN3O2γ = 87.623 (1)°
Mr = 315.75V = 731.67 (5) Å3
Triclinic, P1Z = 2
a = 5.8623 (2) ÅMo Kα radiation
b = 10.9912 (5) ŵ = 0.27 mm1
c = 12.2815 (5) ÅT = 100 K
α = 68.214 (1)°0.40 × 0.22 × 0.14 mm
β = 84.707 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5301 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4768 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.962Rint = 0.021
19562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.60 e Å3
5301 reflectionsΔρmin = 0.64 e Å3
195 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93968 (5)0.44230 (2)1.24269 (2)0.02345 (8)
O10.75357 (12)0.84198 (7)0.70235 (6)0.01543 (13)
O20.71195 (14)1.07742 (8)0.89561 (7)0.02114 (16)
N10.14662 (17)0.82200 (10)0.47108 (8)0.02164 (14)
N20.42483 (14)0.94931 (8)0.72117 (7)0.01425 (14)
N30.57912 (14)0.96760 (8)0.79406 (7)0.01478 (15)
C10.56078 (19)0.72732 (11)0.56195 (10)0.0218 (2)
H1A0.70440.69600.59200.026*
C20.4694 (2)0.67544 (11)0.49036 (10)0.0221 (2)
H2A0.54790.60790.47090.026*
C30.26192 (19)0.72257 (11)0.44693 (9)0.02164 (14)
C40.23766 (16)0.87227 (10)0.54253 (9)0.01640 (17)
H4A0.15870.94080.56010.020*
C50.44533 (16)0.82564 (9)0.59111 (8)0.01382 (16)
C60.53469 (15)0.87669 (9)0.67240 (8)0.01324 (15)
C70.79357 (15)0.89356 (9)0.79165 (8)0.01384 (16)
H7A0.92810.95360.76590.017*
C80.82979 (15)0.78264 (9)0.90601 (8)0.01289 (15)
C91.02946 (15)0.77444 (10)0.96167 (8)0.01520 (16)
H9A1.14250.84040.92810.018*
C101.06480 (16)0.67008 (10)1.06622 (9)0.01629 (17)
H10A1.20060.66461.10450.020*
C110.89815 (16)0.57433 (9)1.11339 (8)0.01493 (16)
C120.69506 (17)0.58158 (10)1.06022 (9)0.01712 (17)
H12A0.58140.51601.09440.021*
C130.66228 (16)0.68659 (10)0.95626 (9)0.01628 (17)
H13A0.52480.69310.91910.020*
C140.1547 (3)0.66352 (15)0.37211 (12)0.0388 (3)
H14A0.00950.62240.41220.058*
H14B0.25850.59730.35880.058*
H14C0.12610.73220.29640.058*
C150.55511 (17)1.06142 (9)0.84241 (8)0.01540 (16)
C160.33496 (18)1.13830 (10)0.82619 (10)0.02050 (19)
H16A0.35081.21560.84650.031*
H16B0.21091.08330.87750.031*
H16C0.29941.16620.74400.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02985 (14)0.01791 (12)0.01908 (12)0.00100 (9)0.00754 (9)0.00162 (9)
O10.0136 (3)0.0209 (3)0.0149 (3)0.0038 (2)0.0041 (2)0.0101 (3)
O20.0226 (3)0.0219 (4)0.0229 (4)0.0025 (3)0.0045 (3)0.0119 (3)
N10.0243 (3)0.0241 (3)0.0164 (3)0.0039 (2)0.0053 (2)0.0062 (2)
N20.0145 (3)0.0157 (3)0.0139 (3)0.0009 (3)0.0034 (2)0.0065 (3)
N30.0151 (3)0.0162 (3)0.0158 (3)0.0032 (3)0.0046 (3)0.0087 (3)
C10.0233 (5)0.0244 (5)0.0237 (5)0.0070 (4)0.0089 (4)0.0151 (4)
C20.0275 (5)0.0232 (5)0.0224 (5)0.0061 (4)0.0094 (4)0.0153 (4)
C30.0243 (3)0.0241 (3)0.0164 (3)0.0039 (2)0.0053 (2)0.0062 (2)
C40.0162 (4)0.0185 (4)0.0146 (4)0.0005 (3)0.0031 (3)0.0059 (3)
C50.0153 (4)0.0147 (4)0.0117 (4)0.0003 (3)0.0019 (3)0.0051 (3)
C60.0127 (3)0.0143 (4)0.0121 (4)0.0008 (3)0.0021 (3)0.0040 (3)
C70.0133 (3)0.0160 (4)0.0136 (4)0.0010 (3)0.0027 (3)0.0068 (3)
C80.0123 (3)0.0144 (4)0.0133 (4)0.0008 (3)0.0023 (3)0.0066 (3)
C90.0121 (3)0.0190 (4)0.0151 (4)0.0012 (3)0.0017 (3)0.0067 (3)
C100.0133 (4)0.0200 (4)0.0159 (4)0.0006 (3)0.0034 (3)0.0065 (3)
C110.0174 (4)0.0140 (4)0.0141 (4)0.0022 (3)0.0030 (3)0.0058 (3)
C120.0183 (4)0.0147 (4)0.0186 (4)0.0027 (3)0.0037 (3)0.0057 (3)
C130.0147 (4)0.0166 (4)0.0180 (4)0.0020 (3)0.0046 (3)0.0059 (3)
C140.0595 (9)0.0387 (7)0.0213 (5)0.0216 (7)0.0116 (5)0.0106 (5)
C150.0191 (4)0.0131 (4)0.0144 (4)0.0012 (3)0.0001 (3)0.0059 (3)
C160.0223 (4)0.0185 (4)0.0235 (5)0.0051 (3)0.0026 (4)0.0114 (4)
Geometric parameters (Å, º) top
Cl1—C111.7373 (10)C7—C81.5055 (13)
O1—C61.3673 (11)C7—H7A1.0000
O1—C71.4489 (11)C8—C91.3923 (12)
O2—C151.2300 (12)C8—C131.3966 (13)
N1—C41.3531 (13)C9—C101.3941 (14)
N1—C31.3716 (16)C9—H9A0.9500
N2—C61.2851 (12)C10—C111.3878 (14)
N2—N31.3993 (11)C10—H10A0.9500
N3—C151.3648 (12)C11—C121.3954 (13)
N3—C71.4730 (12)C12—C131.3900 (14)
C1—C21.3674 (14)C12—H12A0.9500
C1—C51.3914 (14)C13—H13A0.9500
C1—H1A0.9500C14—H14A0.9800
C2—C31.3764 (15)C14—H14B0.9800
C2—H2A0.9500C14—H14C0.9800
C3—C141.4979 (16)C15—C161.5005 (14)
C4—C51.3986 (13)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.4569 (13)C16—H16C0.9800
C6—O1—C7106.85 (7)C13—C8—C7119.68 (8)
C4—N1—C3118.61 (9)C8—C9—C10120.49 (9)
C6—N2—N3104.34 (8)C8—C9—H9A119.8
C15—N3—N2124.21 (8)C10—C9—H9A119.8
C15—N3—C7123.06 (8)C11—C10—C9118.84 (9)
N2—N3—C7111.51 (7)C11—C10—H10A120.6
C2—C1—C5120.58 (10)C9—C10—H10A120.6
C2—C1—H1A119.7C10—C11—C12121.68 (9)
C5—C1—H1A119.7C10—C11—Cl1119.71 (7)
C1—C2—C3118.95 (10)C12—C11—Cl1118.60 (7)
C1—C2—H2A120.5C13—C12—C11118.69 (9)
C3—C2—H2A120.5C13—C12—H12A120.7
N1—C3—C2122.02 (10)C11—C12—H12A120.7
N1—C3—C14118.22 (11)C12—C13—C8120.56 (9)
C2—C3—C14119.75 (12)C12—C13—H13A119.7
N1—C4—C5121.54 (9)C8—C13—H13A119.7
N1—C4—H4A119.2C3—C14—H14A109.5
C5—C4—H4A119.2C3—C14—H14B109.5
C1—C5—C4118.25 (9)H14A—C14—H14B109.5
C1—C5—C6121.10 (9)C3—C14—H14C109.5
C4—C5—C6120.63 (8)H14A—C14—H14C109.5
N2—C6—O1116.52 (8)H14B—C14—H14C109.5
N2—C6—C5126.02 (8)O2—C15—N3118.81 (9)
O1—C6—C5117.44 (8)O2—C15—C16124.60 (9)
O1—C7—N3100.48 (7)N3—C15—C16116.59 (9)
O1—C7—C8109.92 (7)C15—C16—H16A109.5
N3—C7—C8113.89 (8)C15—C16—H16B109.5
O1—C7—H7A110.7H16A—C16—H16B109.5
N3—C7—H7A110.7C15—C16—H16C109.5
C8—C7—H7A110.7H16A—C16—H16C109.5
C9—C8—C13119.71 (9)H16B—C16—H16C109.5
C9—C8—C7120.61 (8)
C6—N2—N3—C15164.62 (9)C15—N3—C7—O1162.77 (8)
C6—N2—N3—C73.06 (10)N2—N3—C7—O15.08 (10)
C5—C1—C2—C30.40 (18)C15—N3—C7—C879.78 (11)
C4—N1—C3—C21.88 (16)N2—N3—C7—C8112.37 (9)
C4—N1—C3—C14177.33 (10)O1—C7—C8—C9123.04 (9)
C1—C2—C3—N11.52 (18)N3—C7—C8—C9125.11 (9)
C1—C2—C3—C14177.68 (11)O1—C7—C8—C1356.48 (11)
C3—N1—C4—C50.33 (15)N3—C7—C8—C1355.37 (11)
C2—C1—C5—C41.86 (16)C13—C8—C9—C100.93 (14)
C2—C1—C5—C6176.61 (10)C7—C8—C9—C10178.58 (8)
N1—C4—C5—C11.50 (15)C8—C9—C10—C110.34 (14)
N1—C4—C5—C6176.97 (9)C9—C10—C11—C121.41 (15)
N3—N2—C6—O10.56 (11)C9—C10—C11—Cl1179.25 (7)
N3—N2—C6—C5177.71 (9)C10—C11—C12—C131.16 (15)
C7—O1—C6—N23.92 (11)Cl1—C11—C12—C13179.50 (8)
C7—O1—C6—C5174.50 (8)C11—C12—C13—C80.16 (15)
C1—C5—C6—N2166.88 (10)C9—C8—C13—C121.19 (15)
C4—C5—C6—N211.55 (15)C7—C8—C13—C12178.33 (9)
C1—C5—C6—O111.37 (14)N2—N3—C15—O2172.90 (9)
C4—C5—C6—O1170.20 (8)C7—N3—C15—O26.60 (14)
C6—O1—C7—N35.07 (9)N2—N3—C15—C167.16 (14)
C6—O1—C7—C8115.27 (8)C7—N3—C15—C16173.46 (9)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
C16—H16A···Cg3i0.982.653.4360 (13)138
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H14ClN3O2
Mr315.75
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.8623 (2), 10.9912 (5), 12.2815 (5)
α, β, γ (°)68.214 (1), 84.707 (1), 87.623 (1)
V3)731.67 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.899, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
19562, 5301, 4768
Rint0.021
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.116, 1.02
No. of reflections5301
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.64

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
C16—H16A···Cg3i0.982.653.4360 (13)138
Symmetry code: (i) x+1, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award.

References

First citationBhatia, S. & Gupta, M. (2011). J. Chem. Pharm. Res. 3, 137–147.  CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalil, A. E. & Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49–58.  Google Scholar
First citationOno, K., Tsukamoto, K. & Tomura, M. (2009). Acta Cryst. E65, o1873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPriya, V. F., Girish, K. S. & Kalluraya, B. (2007). J. Chem. Sci. 119, 41–46.  Google Scholar
First citationRakesh, R. S. & Prabhakar, Y. S. (2009). Der Pharma Chem. 1, 130–140.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2010). Acta Cryst. E66, o878.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds