organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,4-Di­chloro­benzyl­­idene)-5-methyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazole-4-carbohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 May 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, C17H12Cl2N6O3, the 1H-1,2,3-triazole ring [maximum deviation = 0.003 (1) Å] forms dihedral angles of 34.08 (6) and 28.38 (6)°, respectively, with the nitro- and dichloro-substituted benzene rings. The dihedral angle between the benzene rings is 6.68 (5)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into chains running parallel to the a axis.

Related literature

For aryl hydrazones, see: Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]); Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o2416.]); Wang et al. (2010[Wang, Y.-G., Huang, G.-B. & Zhu, B.-C. (2010). Acta Cryst. E66, o2267-o2268.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12Cl2N6O3

  • Mr = 419.23

  • Monoclinic, P 21 /c

  • a = 6.6309 (3) Å

  • b = 22.7059 (10) Å

  • c = 13.3019 (5) Å

  • β = 119.559 (2)°

  • V = 1742.08 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.43 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.967

  • 38004 measured reflections

  • 6085 independent reflections

  • 5280 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.04

  • 6085 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3i 0.93 2.41 3.2649 (17) 153
C12—H12A⋯O3i 0.93 2.59 3.4076 (15) 147
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Aryl hydrazones have been most conveniently synthesized by the reaction of aryl hydrazines with carbonyl compounds. Hydrazones possessing an azomethine —NHNCH— proton constitute an important class of compound for new drug development. Hydrazones have been demonstrated to possess anti-microbial, anti-convulsant, analgesic, anti-inflammatory, anti-platelet, anti-tubercular, anti-cancer and anti-tumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). Prompted by these observations, the title compound was synthesized and its crystal structure is reported here.

The molecular structure is shown in Fig. 1. The 1H-1,2,3-triazole ring [N2–N4/C7/C8; maximum deviation of 0.003 (1) Å at atom N3] forms dihedral angles of 34.08 (6) and 28.38 (6)°, respectively with the nitro-substituted and dichloro-substituted phenyl rings (C1–C6 and C11–C16). The dihedral angle between the nitro-substituted (C1–C6) and dichloro-substituted (C11–C16) phenyl rings is 6.68 (5)°. Bond lengths and angles are within normal ranges and comparable to the related structures (Fun et al., 2011; Wang et al., 2010).

The crystal packing is shown in Fig. 2. The molecules are linked via intermolecular C10—H10A···O3 and C12—H12A···O3 hydrogen bonds (Table 1) into one-dimensional chain parallel to a-axis.

Related literature top

For aryl hydrazones, see: Sridhar & Perumal (2003); Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For related structures, see: Fun et al. (2011); Wang et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained by refluxing a mixture of 5-methyl-1- (4-nitrophenyl)-1H-1,2,3-triazole-4-carbohydrazide (0.01 mol), 3,4-dichlorobenzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Colourless plates were obtained by slow evaporation of an ethanol-N,N- dimethylformamide (DMF) (3:1) solution.

Refinement top

The N-bound H atom was located from the difference map and refined freely [N–H = 0.863 (19) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c axis. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N'-(3,4-Dichlorobenzylidene)-5-methyl-1-(4-nitrophenyl)-1H- 1,2,3-triazole-4-carbohydrazide top
Crystal data top
C17H12Cl2N6O3F(000) = 856
Mr = 419.23Dx = 1.598 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9957 reflections
a = 6.6309 (3) Åθ = 2.5–32.1°
b = 22.7059 (10) ŵ = 0.41 mm1
c = 13.3019 (5) ÅT = 100 K
β = 119.559 (2)°Plate, colourless
V = 1742.08 (13) Å30.43 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
6085 independent reflections
Radiation source: fine-focus sealed tube5280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 32.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.844, Tmax = 0.967k = 3333
38004 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.9914P]
where P = (Fo2 + 2Fc2)/3
6085 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C17H12Cl2N6O3V = 1742.08 (13) Å3
Mr = 419.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6309 (3) ŵ = 0.41 mm1
b = 22.7059 (10) ÅT = 100 K
c = 13.3019 (5) Å0.43 × 0.15 × 0.08 mm
β = 119.559 (2)°
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
6085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5280 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.967Rint = 0.030
38004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.64 e Å3
6085 reflectionsΔρmin = 0.46 e Å3
258 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.56021 (5)0.165386 (13)0.28246 (3)0.02116 (7)
Cl20.03571 (5)0.156467 (14)0.34211 (3)0.02223 (8)
O11.5942 (2)0.28578 (5)1.52152 (10)0.0388 (3)
O21.84421 (19)0.26840 (5)1.46501 (9)0.0319 (2)
O30.78124 (15)0.02047 (4)0.78857 (7)0.01839 (17)
N11.6545 (2)0.26107 (5)1.45880 (10)0.0250 (2)
N21.01583 (16)0.11155 (4)1.10939 (8)0.01214 (16)
N30.83699 (17)0.09041 (4)1.12221 (8)0.01438 (17)
N40.70655 (17)0.05895 (4)1.03092 (8)0.01456 (17)
N50.45947 (17)0.01568 (4)0.81069 (8)0.01497 (18)
N60.32662 (17)0.01542 (4)0.71002 (8)0.01402 (17)
C11.4138 (2)0.14706 (5)1.22695 (10)0.0166 (2)
H1A1.46420.12141.18940.020*
C21.5691 (2)0.18447 (5)1.31329 (10)0.0188 (2)
H2A1.72440.18521.33270.023*
C31.4894 (2)0.22062 (5)1.36985 (10)0.0183 (2)
C41.2597 (2)0.22145 (5)1.34402 (10)0.0196 (2)
H4A1.21190.24531.38510.024*
C51.1028 (2)0.18563 (5)1.25507 (10)0.0165 (2)
H5A0.94660.18621.23390.020*
C61.18123 (19)0.14880 (5)1.19790 (9)0.01316 (19)
C70.99791 (19)0.09356 (5)1.00752 (9)0.01230 (18)
C80.79878 (19)0.05976 (5)0.95886 (9)0.01275 (18)
C90.68418 (19)0.02983 (5)0.84506 (9)0.01328 (19)
C100.1116 (2)0.01900 (5)0.68224 (9)0.01384 (19)
H10A0.05890.00100.72580.017*
C110.05113 (19)0.05422 (5)0.58286 (9)0.01318 (18)
C120.2838 (2)0.05721 (5)0.55521 (10)0.0160 (2)
H12A0.33400.03660.59930.019*
C130.4402 (2)0.09107 (5)0.46155 (10)0.0179 (2)
H13A0.59530.09250.44230.021*
C140.3645 (2)0.12262 (5)0.39687 (10)0.0152 (2)
C150.1323 (2)0.11926 (5)0.42388 (9)0.01465 (19)
C160.0234 (2)0.08516 (5)0.51611 (9)0.01451 (19)
H16A0.17740.08280.53360.017*
C171.1550 (2)0.11109 (6)0.96271 (10)0.0177 (2)
H17A1.07380.10810.87990.027*
H17B1.20530.15100.98500.027*
H17C1.28740.08550.99420.027*
H1N50.406 (3)0.0207 (8)0.8574 (16)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01639 (13)0.02378 (14)0.02034 (14)0.00532 (10)0.00678 (11)0.00923 (10)
Cl20.02019 (14)0.02874 (15)0.02075 (14)0.00390 (11)0.01239 (12)0.01002 (10)
O10.0315 (6)0.0358 (6)0.0322 (6)0.0003 (5)0.0026 (5)0.0195 (5)
O20.0246 (5)0.0302 (5)0.0272 (5)0.0129 (4)0.0023 (4)0.0007 (4)
O30.0149 (4)0.0252 (4)0.0170 (4)0.0007 (3)0.0093 (3)0.0048 (3)
N10.0232 (5)0.0183 (5)0.0197 (5)0.0029 (4)0.0001 (4)0.0014 (4)
N20.0103 (4)0.0142 (4)0.0116 (4)0.0010 (3)0.0051 (3)0.0001 (3)
N30.0127 (4)0.0173 (4)0.0140 (4)0.0033 (3)0.0072 (3)0.0011 (3)
N40.0131 (4)0.0179 (4)0.0131 (4)0.0028 (3)0.0067 (3)0.0019 (3)
N50.0131 (4)0.0208 (4)0.0111 (4)0.0039 (3)0.0061 (3)0.0044 (3)
N60.0137 (4)0.0161 (4)0.0103 (4)0.0028 (3)0.0045 (3)0.0014 (3)
C10.0128 (5)0.0183 (5)0.0160 (5)0.0002 (4)0.0049 (4)0.0005 (4)
C20.0126 (5)0.0202 (5)0.0182 (5)0.0026 (4)0.0035 (4)0.0007 (4)
C30.0175 (5)0.0150 (5)0.0135 (5)0.0033 (4)0.0007 (4)0.0005 (4)
C40.0206 (6)0.0176 (5)0.0157 (5)0.0011 (4)0.0052 (4)0.0031 (4)
C50.0134 (5)0.0186 (5)0.0149 (5)0.0007 (4)0.0051 (4)0.0016 (4)
C60.0124 (5)0.0128 (4)0.0113 (4)0.0010 (3)0.0035 (4)0.0004 (3)
C70.0106 (4)0.0142 (4)0.0111 (4)0.0003 (3)0.0047 (4)0.0001 (3)
C80.0105 (4)0.0152 (4)0.0122 (4)0.0009 (3)0.0053 (4)0.0006 (3)
C90.0118 (5)0.0149 (4)0.0121 (4)0.0004 (4)0.0051 (4)0.0005 (3)
C100.0143 (5)0.0147 (4)0.0120 (4)0.0010 (4)0.0062 (4)0.0001 (3)
C110.0127 (5)0.0142 (4)0.0112 (4)0.0010 (4)0.0048 (4)0.0003 (3)
C120.0134 (5)0.0183 (5)0.0153 (5)0.0006 (4)0.0062 (4)0.0029 (4)
C130.0121 (5)0.0217 (5)0.0189 (5)0.0016 (4)0.0070 (4)0.0046 (4)
C140.0141 (5)0.0159 (4)0.0140 (4)0.0020 (4)0.0057 (4)0.0020 (4)
C150.0162 (5)0.0153 (4)0.0136 (4)0.0005 (4)0.0083 (4)0.0012 (3)
C160.0137 (5)0.0167 (4)0.0133 (4)0.0013 (4)0.0067 (4)0.0003 (3)
C170.0139 (5)0.0250 (5)0.0169 (5)0.0030 (4)0.0096 (4)0.0012 (4)
Geometric parameters (Å, º) top
Cl1—C141.7305 (11)C4—C51.3889 (16)
Cl2—C151.7304 (11)C4—H4A0.9300
O1—N11.2248 (17)C5—C61.3920 (16)
O2—N11.2303 (17)C5—H5A0.9300
O3—C91.2252 (14)C7—C81.3813 (15)
N1—C31.4711 (15)C7—C171.4874 (16)
N2—C71.3631 (14)C8—C91.4818 (15)
N2—N31.3658 (13)C10—C111.4642 (15)
N2—C61.4249 (14)C10—H10A0.9300
N3—N41.3024 (13)C11—C161.3998 (15)
N4—C81.3681 (14)C11—C121.4000 (16)
N5—C91.3640 (14)C12—C131.3941 (16)
N5—N61.3799 (13)C12—H12A0.9300
N5—H1N50.863 (19)C13—C141.3897 (16)
N6—C101.2871 (15)C13—H13A0.9300
C1—C21.3906 (16)C14—C151.4001 (16)
C1—C61.3935 (16)C15—C161.3858 (15)
C1—H1A0.9300C16—H16A0.9300
C2—C31.3824 (18)C17—H17A0.9600
C2—H2A0.9300C17—H17B0.9600
C3—C41.3869 (18)C17—H17C0.9600
O1—N1—O2123.98 (12)N4—C8—C7109.48 (9)
O1—N1—C3118.05 (12)N4—C8—C9121.89 (10)
O2—N1—C3117.97 (12)C7—C8—C9128.57 (10)
C7—N2—N3111.32 (9)O3—C9—N5124.82 (10)
C7—N2—C6130.79 (9)O3—C9—C8123.11 (10)
N3—N2—C6117.85 (9)N5—C9—C8112.05 (9)
N4—N3—N2107.12 (9)N6—C10—C11120.81 (10)
N3—N4—C8108.97 (9)N6—C10—H10A119.6
C9—N5—N6120.97 (9)C11—C10—H10A119.6
C9—N5—H1N5120.0 (12)C16—C11—C12119.81 (10)
N6—N5—H1N5118.2 (12)C16—C11—C10120.89 (10)
C10—N6—N5113.41 (10)C12—C11—C10119.30 (10)
C2—C1—C6118.62 (11)C13—C12—C11119.94 (11)
C2—C1—H1A120.7C13—C12—H12A120.0
C6—C1—H1A120.7C11—C12—H12A120.0
C3—C2—C1119.09 (11)C14—C13—C12120.06 (11)
C3—C2—H2A120.5C14—C13—H13A120.0
C1—C2—H2A120.5C12—C13—H13A120.0
C2—C3—C4122.77 (11)C13—C14—C15120.02 (10)
C2—C3—N1118.42 (11)C13—C14—Cl1119.38 (9)
C4—C3—N1118.78 (11)C15—C14—Cl1120.60 (9)
C3—C4—C5118.19 (11)C16—C15—C14120.16 (10)
C3—C4—H4A120.9C16—C15—Cl2118.96 (9)
C5—C4—H4A120.9C14—C15—Cl2120.88 (8)
C4—C5—C6119.53 (11)C15—C16—C11120.00 (10)
C4—C5—H5A120.2C15—C16—H16A120.0
C6—C5—H5A120.2C11—C16—H16A120.0
C5—C6—C1121.73 (10)C7—C17—H17A109.5
C5—C6—N2117.74 (10)C7—C17—H17B109.5
C1—C6—N2120.52 (10)H17A—C17—H17B109.5
N2—C7—C8103.11 (9)C7—C17—H17C109.5
N2—C7—C17125.69 (10)H17A—C17—H17C109.5
C8—C7—C17131.11 (10)H17B—C17—H17C109.5
C7—N2—N3—N40.47 (12)N3—N4—C8—C9177.51 (10)
C6—N2—N3—N4178.56 (9)N2—C7—C8—N40.28 (12)
N2—N3—N4—C80.28 (12)C17—C7—C8—N4176.31 (11)
C9—N5—N6—C10171.91 (10)N2—C7—C8—C9177.56 (10)
C6—C1—C2—C32.09 (17)C17—C7—C8—C91.0 (2)
C1—C2—C3—C40.21 (18)N6—N5—C9—O35.22 (17)
C1—C2—C3—N1178.39 (11)N6—N5—C9—C8176.32 (9)
O1—N1—C3—C2168.22 (12)N4—C8—C9—O3166.12 (11)
O2—N1—C3—C212.38 (17)C7—C8—C9—O316.90 (18)
O1—N1—C3—C413.52 (18)N4—C8—C9—N515.39 (15)
O2—N1—C3—C4165.87 (12)C7—C8—C9—N5161.59 (11)
C2—C3—C4—C52.01 (18)N5—N6—C10—C11175.27 (9)
N1—C3—C4—C5176.16 (11)N6—C10—C11—C160.42 (16)
C3—C4—C5—C62.29 (18)N6—C10—C11—C12179.89 (10)
C4—C5—C6—C10.43 (17)C16—C11—C12—C130.14 (17)
C4—C5—C6—N2178.26 (10)C10—C11—C12—C13179.34 (10)
C2—C1—C6—C51.80 (17)C11—C12—C13—C141.09 (18)
C2—C1—C6—N2179.55 (10)C12—C13—C14—C151.62 (18)
C7—N2—C6—C5144.57 (12)C12—C13—C14—Cl1178.90 (9)
N3—N2—C6—C533.08 (14)C13—C14—C15—C160.91 (17)
C7—N2—C6—C136.73 (17)Cl1—C14—C15—C16179.61 (9)
N3—N2—C6—C1145.62 (11)C13—C14—C15—Cl2178.15 (9)
N3—N2—C7—C80.46 (12)Cl1—C14—C15—Cl21.32 (14)
C6—N2—C7—C8178.23 (10)C14—C15—C16—C110.32 (17)
N3—N2—C7—C17176.38 (10)Cl2—C15—C16—C11179.41 (8)
C6—N2—C7—C171.40 (18)C12—C11—C16—C150.84 (16)
N3—N4—C8—C70.01 (13)C10—C11—C16—C15178.62 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.932.413.2649 (17)153
C12—H12A···O3i0.932.593.4076 (15)147
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H12Cl2N6O3
Mr419.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.6309 (3), 22.7059 (10), 13.3019 (5)
β (°) 119.559 (2)
V3)1742.08 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.43 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.844, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
38004, 6085, 5280
Rint0.030
(sin θ/λ)max1)0.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.04
No. of reflections6085
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.932.413.2649 (17)153
C12—H12A···O3i0.932.593.4076 (15)147
Symmetry code: (i) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. BK is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.

References

First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o2416.  Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Y.-G., Huang, G.-B. & Zhu, B.-C. (2010). Acta Cryst. E66, o2267–o2268.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds