organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­­oxy-4-methyl-1H-1,2,4-triazol-5(4H)-one monohydrate

aSchool of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: xiaojun801115@163.com

(Received 18 May 2012; accepted 22 May 2012; online 31 May 2012)

In the title hydrate, C4H7N3O2·H2O, all the non-H atoms lie on a crystallographic mirror plane. The H atoms of both methyl groups are disordered over two sets of sites. In the crystal, N—H⋯Ow and Ow—H⋯Ok (w = water and k = ketone) hydrogen bonds link the components into (010) sheets.

Related literature

For related structures, see: Jin et al. (2011[Jin, D.-C., Zhang, W.-B., Piao, F.-Y. & Han, R.-B. (2011). Acta Cryst. E67, o1821.]); Liu & Liu (2011[Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.]); Liu et al. (2011[Liu, X. H., Tan, C. X. & Weng, J. Q. (2011). Phosphorus Sulfur Silicon Relat. Elem. 186, 558-564.], 2012[Liu, X. H., Pan, L., Weng, J. Q., Tan, C. X., Li, Y. H., Wang, B. L. & Li, Z. M. (2012). Mol. Divers. doi:10,1007/s11030-011-9352-z.]); Ustabaş et al. (2010)[Ustabaş, R., Çoruh, U., Ünlüer, D., Hökelek, T. & Ermiş, E. (2010). Acta Cryst. E66, o2615.]. For bioactivity data, see Tan et al. (2012[Tan, C. X., Shi, Y. X., Weng, J. Q., Liu, X. H., Li, B. J. & Zhao, W. G. (2012). Lett. Drug. Des. Discov. 9, 431-435.]).

[Scheme 1]

Experimental

Crystal data
  • C4H7N3O2·H2O

  • Mr = 147.14

  • Orthorhombic, P n m a

  • a = 6.810 (4) Å

  • b = 6.506 (4) Å

  • c = 15.277 (9) Å

  • V = 676.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.976, Tmax = 0.983

  • 6611 measured reflections

  • 873 independent reflections

  • 727 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.01

  • 873 reflections

  • 72 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.90 (1) 1.85 (1) 2.7520 (15) 174 (1)
O3—H3A⋯O1i 0.87 (1) 1.89 (1) 2.7518 (18) 174 (1)
O3—H3B⋯O1ii 0.86 (1) 1.94 (1) 2.8024 (18) 179 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

Sulfur and nitrogen heterocyclic compounds have received considerable attention in recent years because of their medicinal and pesticidal importance, such as 1,3,4-thiadiazoles, pyrimidines, 1,2,4-triazoles (Jin et al. 2011; Liu & Liu, 2011; Liu et al. 2011; Liu et al., 2012; Tan et al., 2011; Ustabaş et al., 2010).

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the orthorhombic space group Pnma. As shown in Fig. 2, the crystal structure features intermolecular hydrogen bonds O-H···O and N-H···O.

Related literature top

For related structures, see: Jin et al. (2011); Liu & Liu (2011); Liu et al. (2011, 2012); Ustabaş et al. (2010). For bioactivity data, see Tan et al. (2012).

Experimental top

The tite compound was available commercially. The crystals were grown from ethanol as colourless prisms

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing for (I).
3-Methoxy-4-methyl-1H-1,2,4-triazol-5(4H)-one monohydrate top
Crystal data top
C4H7N3O2·H2ODx = 1.444 Mg m3
Mr = 147.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 2353 reflections
a = 6.810 (4) Åθ = 3.0–27.8°
b = 6.506 (4) ŵ = 0.12 mm1
c = 15.277 (9) ÅT = 113 K
V = 676.9 (7) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.14 mm
F(000) = 312
Data collection top
Rigaku Saturn724 CCD
diffractometer
873 independent reflections
Radiation source: rotating anode727 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.048
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 3.3°
ω and ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 87
Tmin = 0.976, Tmax = 0.983l = 2020
6611 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0616P)2]
where P = (Fo2 + 2Fc2)/3
873 reflections(Δ/σ)max = 0.003
72 parametersΔρmax = 0.23 e Å3
4 restraintsΔρmin = 0.26 e Å3
Crystal data top
C4H7N3O2·H2OV = 676.9 (7) Å3
Mr = 147.14Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 6.810 (4) ŵ = 0.12 mm1
b = 6.506 (4) ÅT = 113 K
c = 15.277 (9) Å0.20 × 0.18 × 0.14 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
873 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
727 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.048
6611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
873 reflectionsΔρmin = 0.26 e Å3
72 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.64561 (9)0.25000.35699 (4)0.02165 (15)
O20.49415 (9)0.25000.65038 (4)0.02269 (16)
N10.62148 (10)0.25000.50977 (4)0.01766 (17)
N20.35229 (11)0.25000.43609 (4)0.01895 (17)
N30.29539 (11)0.25000.52418 (5)0.01921 (18)
C10.54905 (11)0.25000.42578 (6)0.0172 (2)
C20.46308 (12)0.25000.56483 (6)0.0169 (2)
C40.82847 (13)0.25000.53342 (6)0.0235 (2)
H4A0.90600.19490.48470.035*0.50
H4B0.84810.16420.58540.035*0.50
H4C0.87070.39090.54610.035*0.50
C30.31615 (14)0.25000.70293 (6)0.0257 (2)
H3D0.25280.11510.69900.039*0.50
H3E0.22620.35580.68110.039*0.50
H3C0.34950.27910.76410.039*0.50
O30.04758 (10)0.25000.31776 (5)0.0449 (2)
H20.2590 (12)0.25000.3942 (6)0.034 (3)*
H3A0.0698 (13)0.25000.2619 (4)0.047 (4)*
H3B0.0752 (9)0.25000.3306 (6)0.063 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0167 (3)0.0331 (3)0.0152 (3)0.0000.0026 (2)0.000
O20.0164 (3)0.0380 (4)0.0136 (3)0.0000.0014 (2)0.000
N10.0116 (3)0.0256 (4)0.0158 (3)0.0000.0001 (3)0.000
N20.0134 (3)0.0301 (4)0.0133 (3)0.0000.0005 (3)0.000
N30.0152 (3)0.0273 (4)0.0151 (3)0.0000.0014 (3)0.000
C10.0154 (4)0.0183 (4)0.0179 (4)0.0000.0004 (3)0.000
C20.0149 (4)0.0211 (4)0.0147 (4)0.0000.0011 (3)0.000
C40.0116 (4)0.0377 (5)0.0213 (4)0.0000.0012 (3)0.000
C30.0212 (4)0.0394 (5)0.0166 (4)0.0000.0074 (3)0.000
O30.0155 (3)0.1026 (7)0.0165 (3)0.0000.0008 (3)0.000
Geometric parameters (Å, º) top
O1—C11.2397 (12)N3—C21.2999 (12)
O2—C21.3239 (13)C4—H4A0.9800
O2—C31.4540 (13)C4—H4B0.9800
N1—C21.3679 (12)C4—H4C0.9800
N1—C11.3746 (13)C3—H3D0.9800
N1—C41.4552 (14)C3—H3E0.9800
N2—C11.3492 (13)C3—H3C0.9800
N2—N31.4003 (12)O3—H3A0.867 (6)
N2—H20.901 (7)O3—H3B0.859 (6)
C2—O2—C3114.32 (7)N1—C4—H4A109.5
C2—N1—C1106.92 (8)N1—C4—H4B109.5
C2—N1—C4127.68 (8)H4A—C4—H4B109.5
C1—N1—C4125.41 (7)N1—C4—H4C109.5
C1—N2—N3112.77 (7)H4A—C4—H4C109.5
C1—N2—H2128.1 (6)H4B—C4—H4C109.5
N3—N2—H2119.1 (6)O2—C3—H3D109.5
C2—N3—N2102.47 (7)O2—C3—H3E109.5
O1—C1—N2128.74 (8)H3D—C3—H3E109.5
O1—C1—N1126.94 (8)O2—C3—H3C109.5
N2—C1—N1104.32 (7)H3D—C3—H3C109.5
N3—C2—O2127.74 (8)H3E—C3—H3C109.5
N3—C2—N1113.52 (9)H3A—O3—H3B113.2 (8)
O2—C2—N1118.75 (8)
C1—N2—N3—C20.0N2—N3—C2—N10.0
N3—N2—C1—O1180.0C3—O2—C2—N30.0
N3—N2—C1—N10.0C3—O2—C2—N1180.0
C2—N1—C1—O1180.0C1—N1—C2—N30.0
C4—N1—C1—O10.0C4—N1—C2—N3180.0
C2—N1—C1—N20.0C1—N1—C2—O2180.0
C4—N1—C1—N2180.0C4—N1—C2—O20.0
N2—N3—C2—O2180.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.90 (1)1.85 (1)2.7520 (15)174 (1)
O3—H3A···O1i0.87 (1)1.89 (1)2.7518 (18)174 (1)
O3—H3B···O1ii0.86 (1)1.94 (1)2.8024 (18)179 (1)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC4H7N3O2·H2O
Mr147.14
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)113
a, b, c (Å)6.810 (4), 6.506 (4), 15.277 (9)
V3)676.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6611, 873, 727
Rint0.048
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.01
No. of reflections873
No. of parameters72
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.901 (7)1.854 (7)2.7520 (15)173.9 (9)
O3—H3A···O1i0.867 (6)1.887 (6)2.7518 (18)174.2 (9)
O3—H3B···O1ii0.859 (6)1.944 (6)2.8024 (18)178.8 (10)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1, y, z.
 

Acknowledgements

We gratefully acknowledge the financial support from the Doctoral Research Fund of Henan University of Traditional Chinese Medicine.

References

First citationJin, D.-C., Zhang, W.-B., Piao, F.-Y. & Han, R.-B. (2011). Acta Cryst. E67, o1821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, X. H., Pan, L., Weng, J. Q., Tan, C. X., Li, Y. H., Wang, B. L. & Li, Z. M. (2012). Mol. Divers. doi:10,1007/s11030-011-9352-z.  Google Scholar
First citationLiu, X. H., Tan, C. X. & Weng, J. Q. (2011). Phosphorus Sulfur Silicon Relat. Elem. 186, 558–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, C. X., Shi, Y. X., Weng, J. Q., Liu, X. H., Li, B. J. & Zhao, W. G. (2012). Lett. Drug. Des. Discov. 9, 431–435.  CrossRef CAS Google Scholar
First citationUstabaş, R., Çoruh, U., Ünlüer, D., Hökelek, T. & Ermiş, E. (2010). Acta Cryst. E66, o2615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds