organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[Bis(4-fluoro­phen­yl)meth­yl]-4-[2-(naphthalen-2-yl­­oxy)eth­yl]piperazine

aSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China, and bSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 21 May 2012; accepted 26 May 2012; online 31 May 2012)

In the title mol­ecule, C29H28F2N2O, the piperazine ring adopts a chair conformation with the pendant N—C bonds in equatorial orientations. The conformation of the N—C—C—O linkage is gauche [torsion angle = −64.6 (4)°] and the dihedral angle between the fluoro­benzene rings is 64.02 (15)°.

Related literature

For related structures and background to 1-[bis­(4-fluoro­phen­yl)meth­yl]piperazine derivatives, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]); Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o968.]); Dai et al. (2012[Dai, Z.-H., Zhong, Y. & Wu, B. (2012). Acta Cryst. E68, o1077.]).

[Scheme 1]

Experimental

Crystal data
  • C29H28F2N2O

  • Mr = 458.53

  • Monoclinic, P 21 /n

  • a = 10.416 (2) Å

  • b = 16.870 (3) Å

  • c = 14.311 (3) Å

  • β = 100.57 (3)°

  • V = 2472.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 4802 measured reflections

  • 4541 independent reflections

  • 2743 reflections with I > 2σ(I)

  • Rint = 0.087

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.182

  • S = 1.01

  • 4541 reflections

  • 307 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our study of 1-(bis(4-fluorophenyl)methyl)piperazine derivatives (Wu et al., 2008; Dai et al., 2012), we present here the title compound (I). In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Dai et al., 2012). The piperazine ring adopts a chair conformation with puchering parameters Q = 0.590 (3), Theta = 176.9 (3), Phi = 10 (5). The dihedral angle between the fluorobenzene rings is 64.02 (15).

Related literature top

For related structures and background to 1-[bis(4-fluorophenyl)methyl]piperazine derivatives, see: Wu et al. (2008); Dayananda et al. (2012); Dai et al., (2012).

Experimental top

A mixture of 2-(2-bromoethoxy)naphthalene (10 mmol), 1-(bis(4-fluorophenyl)methyl)piperazine (15 mmol) and triethylamine (5 ml) were mixed along with 40 ml acetonitrile and then refluxed for about 24 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was completed, the solvent was removed under reduced pressure. The resultant mixture was cooled. The solid, 1-(bis(4-fluorophenyl)methyl)-4-(2-(naphthalen-2-yloxy)ethyl)piperazine obtained was filtered and was recrystallized from ethanol. Colorless blocks were grown from ethyl acetate:hexane (2:1) solution by a slow evaporation at room temperature.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.97 and 0.98 Å for CH(aromatic), CH2 and CH(methine) H-atoms, respectively, with Uĩso~(H) = 1.2 U~eq~ of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H drawn at 70% probability level.
1-[Bis(4-fluorophenyl)methyl]-4-[2-(naphthalen-2-yloxy)ethyl]piperazine top
Crystal data top
C29H28F2N2OF(000) = 968
Mr = 458.53Dx = 1.232 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.416 (2) ÅCell parameters from 25 reflections
b = 16.870 (3) Åθ = 10–13°
c = 14.311 (3) ŵ = 0.09 mm1
β = 100.57 (3)°T = 293 K
V = 2472.0 (9) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.087
Radiation source: fine-focus sealed tubeθmax = 25.4°, θmin = 1.9°
Graphite monochromatorh = 012
ω/2θ scansk = 020
4802 measured reflectionsl = 1716
4541 independent reflections3 standard reflections every 200 reflections
2743 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
4541 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.26 e Å3
4 restraintsΔρmin = 0.22 e Å3
Crystal data top
C29H28F2N2OV = 2472.0 (9) Å3
Mr = 458.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.416 (2) ŵ = 0.09 mm1
b = 16.870 (3) ÅT = 293 K
c = 14.311 (3) Å0.30 × 0.20 × 0.10 mm
β = 100.57 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.087
4802 measured reflections3 standard reflections every 200 reflections
4541 independent reflections intensity decay: 1%
2743 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0584 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
4541 reflectionsΔρmin = 0.22 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.27757 (19)0.41478 (11)0.47099 (15)0.0661 (6)
N10.2649 (2)0.58274 (13)0.52960 (17)0.0575 (6)
F10.90854 (19)0.59295 (13)0.96914 (15)0.0967 (7)
C10.1204 (3)0.22487 (16)0.3853 (2)0.0542 (7)
F20.4277 (2)1.05347 (11)0.74130 (15)0.0922 (7)
N20.4063 (2)0.68238 (13)0.67855 (16)0.0528 (6)
C20.0148 (3)0.19302 (19)0.3205 (2)0.0721 (9)
H2A0.04480.22680.28400.087*
C30.0006 (4)0.1129 (2)0.3110 (3)0.0988 (13)
H3A0.07070.09270.26790.119*
C40.0860 (4)0.0619 (2)0.3644 (4)0.1085 (15)
H4A0.07400.00750.35720.130*
C50.1889 (4)0.0902 (2)0.4273 (3)0.0888 (11)
H5A0.24640.05490.46330.107*
C60.2100 (3)0.17243 (17)0.4390 (2)0.0613 (8)
C70.3172 (3)0.20455 (18)0.5024 (2)0.0654 (8)
H7A0.37580.17050.53940.078*
C80.3365 (3)0.28384 (18)0.5104 (2)0.0625 (8)
H8A0.40910.30370.55120.075*
C90.2463 (3)0.33609 (16)0.45675 (19)0.0534 (7)
C100.1397 (3)0.30770 (16)0.3968 (2)0.0523 (7)
H10A0.07920.34280.36340.063*
C110.1892 (3)0.47098 (17)0.4185 (2)0.0688 (9)
H11A0.10650.46970.44050.083*
H11B0.17310.45730.35160.083*
C120.2474 (3)0.55314 (17)0.4322 (2)0.0694 (9)
H12A0.33150.55280.41230.083*
H12B0.19120.58960.39090.083*
C130.3933 (3)0.56131 (17)0.5841 (2)0.0598 (8)
H13A0.46070.58030.55110.072*
H13B0.40030.50400.58850.072*
C140.4152 (3)0.59602 (16)0.6829 (2)0.0569 (7)
H14A0.35030.57540.71710.068*
H14B0.50080.58060.71700.068*
C150.2747 (3)0.70173 (17)0.6280 (2)0.0624 (8)
H15A0.26350.75880.62570.075*
H15B0.21060.67950.66190.075*
C160.2528 (3)0.66947 (17)0.5293 (2)0.0648 (8)
H16A0.16630.68440.49640.078*
H16B0.31610.69230.49510.078*
C170.4344 (3)0.72010 (16)0.77297 (19)0.0544 (7)
H17A0.36470.70550.80730.065*
C180.5624 (3)0.69034 (16)0.82958 (19)0.0534 (7)
C190.6790 (3)0.6934 (2)0.7902 (2)0.0677 (9)
H19A0.67750.71730.73140.081*
C200.7921 (3)0.6614 (2)0.8381 (2)0.0739 (9)
H20A0.86720.66280.81170.089*
C210.7952 (3)0.62780 (19)0.9240 (2)0.0659 (8)
C220.6914 (3)0.62547 (17)0.9676 (2)0.0685 (9)
H22A0.69750.60361.02790.082*
C230.5704 (3)0.65809 (17)0.9176 (2)0.0625 (8)
H23A0.49680.65710.94580.075*
C240.4343 (3)0.80943 (16)0.76286 (19)0.0541 (7)
C250.3778 (3)0.85731 (18)0.8273 (2)0.0622 (8)
H25A0.34120.83340.87470.075*
C260.3776 (3)0.93915 (19)0.8193 (2)0.0686 (9)
H26A0.34190.97050.86150.082*
C270.4299 (3)0.97249 (18)0.7496 (2)0.0639 (8)
C280.4854 (4)0.93165 (17)0.6871 (2)0.0738 (9)
H28A0.52130.95740.64050.089*
C290.4875 (3)0.84671 (16)0.6948 (2)0.0694 (9)
H29A0.52570.81680.65270.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0676 (13)0.0462 (12)0.0759 (14)0.0018 (10)0.0091 (11)0.0051 (10)
N10.0629 (15)0.0381 (12)0.0640 (15)0.0030 (11)0.0082 (12)0.0007 (10)
F10.0811 (14)0.1069 (17)0.0887 (14)0.0046 (12)0.0196 (11)0.0062 (12)
C10.0533 (16)0.0475 (17)0.0649 (18)0.0035 (13)0.0188 (14)0.0039 (13)
F20.1064 (16)0.0490 (11)0.1124 (16)0.0025 (10)0.0030 (12)0.0074 (10)
N20.0521 (14)0.0410 (13)0.0625 (14)0.0018 (10)0.0027 (11)0.0030 (11)
C20.069 (2)0.055 (2)0.090 (2)0.0001 (16)0.0066 (18)0.0102 (17)
C30.085 (3)0.065 (2)0.137 (4)0.009 (2)0.004 (3)0.022 (2)
C40.108 (3)0.047 (2)0.159 (4)0.004 (2)0.004 (3)0.011 (2)
C50.087 (3)0.051 (2)0.124 (3)0.0107 (19)0.007 (2)0.001 (2)
C60.0568 (18)0.0496 (17)0.079 (2)0.0041 (14)0.0173 (16)0.0012 (15)
C70.0619 (19)0.0530 (19)0.081 (2)0.0157 (15)0.0110 (17)0.0063 (15)
C80.0539 (18)0.062 (2)0.0681 (19)0.0056 (14)0.0009 (15)0.0024 (15)
C90.0589 (17)0.0467 (17)0.0542 (16)0.0052 (13)0.0094 (14)0.0032 (13)
C100.0531 (16)0.0460 (16)0.0564 (16)0.0065 (13)0.0065 (13)0.0008 (13)
C110.078 (2)0.0483 (18)0.0691 (19)0.0024 (16)0.0140 (16)0.0005 (14)
C120.086 (2)0.0466 (17)0.067 (2)0.0017 (16)0.0093 (17)0.0013 (14)
C130.0586 (17)0.0437 (16)0.0726 (19)0.0031 (13)0.0000 (15)0.0022 (14)
C140.0564 (17)0.0428 (16)0.0652 (18)0.0035 (13)0.0052 (14)0.0007 (13)
C150.0629 (19)0.0409 (15)0.080 (2)0.0054 (13)0.0041 (16)0.0024 (14)
C160.071 (2)0.0421 (16)0.073 (2)0.0080 (14)0.0099 (16)0.0003 (14)
C170.0578 (17)0.0530 (17)0.0549 (17)0.0052 (13)0.0171 (14)0.0029 (13)
C180.0648 (18)0.0462 (16)0.0502 (16)0.0079 (13)0.0130 (14)0.0071 (12)
C190.064 (2)0.088 (2)0.0504 (17)0.0104 (17)0.0069 (15)0.0033 (16)
C200.0564 (19)0.102 (3)0.060 (2)0.0097 (18)0.0020 (15)0.0002 (18)
C210.067 (2)0.064 (2)0.0599 (19)0.0063 (16)0.0058 (17)0.0075 (16)
C220.098 (3)0.0520 (18)0.0523 (17)0.0059 (17)0.0052 (18)0.0012 (14)
C230.081 (2)0.0505 (18)0.0587 (18)0.0065 (16)0.0211 (16)0.0028 (14)
C240.0537 (16)0.0503 (17)0.0581 (17)0.0044 (13)0.0094 (13)0.0080 (13)
C250.0598 (18)0.067 (2)0.0615 (18)0.0012 (15)0.0144 (14)0.0040 (15)
C260.066 (2)0.062 (2)0.075 (2)0.0126 (16)0.0056 (17)0.0190 (17)
C270.067 (2)0.0490 (18)0.069 (2)0.0003 (15)0.0056 (16)0.0108 (15)
C280.099 (3)0.0538 (19)0.068 (2)0.0155 (18)0.0136 (19)0.0032 (16)
C290.095 (2)0.0533 (18)0.0664 (19)0.0074 (17)0.0318 (18)0.0123 (15)
Geometric parameters (Å, º) top
O—C91.373 (3)C13—C141.508 (4)
O—C111.434 (3)C13—H13A0.9700
N1—C121.461 (4)C13—H13B0.9700
N1—C131.465 (3)C14—H14A0.9700
N1—C161.468 (3)C14—H14B0.9700
F1—C211.370 (4)C15—C161.492 (4)
C1—C61.408 (4)C15—H15A0.9700
C1—C21.408 (4)C15—H15B0.9700
C1—C101.417 (4)C16—H16A0.9700
F2—C271.371 (3)C16—H16B0.9700
N2—C141.461 (3)C17—C181.513 (4)
N2—C151.465 (3)C17—C241.514 (4)
N2—C171.474 (3)C17—H17A0.9800
C2—C31.364 (5)C18—C231.360 (4)
C2—H2A0.9300C18—C191.431 (3)
C3—C41.373 (5)C19—C201.361 (4)
C3—H3A0.9300C19—H19A0.9300
C4—C51.353 (5)C20—C211.349 (4)
C4—H4A0.9300C20—H20A0.9300
C5—C61.410 (4)C21—C221.344 (4)
C5—H5A0.9300C22—C231.439 (3)
C6—C71.411 (4)C22—H22A0.9300
C7—C81.354 (4)C23—H23A0.9300
C7—H7A0.9300C24—C291.360 (4)
C8—C91.408 (4)C24—C251.431 (3)
C8—H8A0.9300C25—C261.385 (4)
C9—C101.360 (4)C25—H25A0.9300
C10—H10A0.9300C26—C271.345 (4)
C11—C121.511 (4)C26—H26A0.9300
C11—H11A0.9700C27—C281.341 (4)
C11—H11B0.9700C28—C291.437 (3)
C12—H12A0.9700C28—H28A0.9300
C12—H12B0.9700C29—H29A0.9300
C9—O—C11116.7 (2)N2—C14—H14B109.5
C12—N1—C13111.5 (2)C13—C14—H14B109.5
C12—N1—C16110.0 (2)H14A—C14—H14B108.1
C13—N1—C16108.5 (2)N2—C15—C16110.7 (2)
C6—C1—C2118.6 (3)N2—C15—H15A109.5
C6—C1—C10119.4 (3)C16—C15—H15A109.5
C2—C1—C10122.0 (3)N2—C15—H15B109.5
C14—N2—C15106.8 (2)C16—C15—H15B109.5
C14—N2—C17113.1 (2)H15A—C15—H15B108.1
C15—N2—C17111.6 (2)N1—C16—C15111.2 (2)
C3—C2—C1120.5 (3)N1—C16—H16A109.4
C3—C2—H2A119.8C15—C16—H16A109.4
C1—C2—H2A119.8N1—C16—H16B109.4
C2—C3—C4120.8 (4)C15—C16—H16B109.4
C2—C3—H3A119.6H16A—C16—H16B108.0
C4—C3—H3A119.6N2—C17—C18110.8 (2)
C5—C4—C3120.6 (4)N2—C17—C24110.2 (2)
C5—C4—H4A119.7C18—C17—C24111.5 (2)
C3—C4—H4A119.7N2—C17—H17A108.1
C4—C5—C6120.8 (3)C18—C17—H17A108.1
C4—C5—H5A119.6C24—C17—H17A108.1
C6—C5—H5A119.6C23—C18—C19117.8 (3)
C1—C6—C5118.7 (3)C23—C18—C17121.8 (2)
C1—C6—C7118.5 (3)C19—C18—C17120.3 (2)
C5—C6—C7122.8 (3)C20—C19—C18120.4 (3)
C8—C7—C6121.4 (3)C20—C19—H19A119.8
C8—C7—H7A119.3C18—C19—H19A119.8
C6—C7—H7A119.3C21—C20—C19120.0 (3)
C7—C8—C9119.9 (3)C21—C20—H20A120.0
C7—C8—H8A120.1C19—C20—H20A120.0
C9—C8—H8A120.1C22—C21—C20123.3 (3)
C10—C9—O125.3 (2)C22—C21—F1117.8 (3)
C10—C9—C8120.6 (3)C20—C21—F1119.0 (3)
O—C9—C8114.1 (2)C21—C22—C23117.6 (3)
C9—C10—C1120.2 (3)C21—C22—H22A121.2
C9—C10—H10A119.9C23—C22—H22A121.2
C1—C10—H10A119.9C18—C23—C22120.8 (3)
O—C11—C12109.6 (2)C18—C23—H23A119.6
O—C11—H11A109.8C22—C23—H23A119.6
C12—C11—H11A109.8C29—C24—C25118.0 (3)
O—C11—H11B109.8C29—C24—C17122.4 (2)
C12—C11—H11B109.8C25—C24—C17119.6 (3)
H11A—C11—H11B108.2C26—C25—C24120.3 (3)
N1—C12—C11114.4 (3)C26—C25—H25A119.9
N1—C12—H12A108.7C24—C25—H25A119.9
C11—C12—H12A108.7C27—C26—C25118.9 (3)
N1—C12—H12B108.7C27—C26—H26A120.6
C11—C12—H12B108.7C25—C26—H26A120.6
H12A—C12—H12B107.6C28—C27—C26124.3 (3)
N1—C13—C14111.7 (2)C28—C27—F2117.1 (3)
N1—C13—H13A109.3C26—C27—F2118.6 (3)
C14—C13—H13A109.3C27—C28—C29117.6 (3)
N1—C13—H13B109.3C27—C28—H28A121.2
C14—C13—H13B109.3C29—C28—H28A121.2
H13A—C13—H13B107.9C24—C29—C28120.9 (3)
N2—C14—C13110.5 (2)C24—C29—H29A119.5
N2—C14—H14A109.5C28—C29—H29A119.5
C13—C14—H14A109.5
C6—C1—C2—C30.7 (5)C13—N1—C16—C1555.9 (3)
C10—C1—C2—C3179.8 (3)N2—C15—C16—N160.9 (3)
C1—C2—C3—C40.1 (6)C14—N2—C17—C1851.5 (3)
C2—C3—C4—C50.2 (7)C15—N2—C17—C18171.9 (2)
C3—C4—C5—C60.5 (7)C14—N2—C17—C24175.4 (2)
C2—C1—C6—C51.4 (4)C15—N2—C17—C2464.1 (3)
C10—C1—C6—C5179.5 (3)N2—C17—C18—C23125.1 (3)
C2—C1—C6—C7178.7 (3)C24—C17—C18—C23111.7 (3)
C10—C1—C6—C70.4 (4)N2—C17—C18—C1953.0 (3)
C4—C5—C6—C11.3 (6)C24—C17—C18—C1970.1 (3)
C4—C5—C6—C7178.8 (4)C23—C18—C19—C203.0 (4)
C1—C6—C7—C81.7 (5)C17—C18—C19—C20175.2 (3)
C5—C6—C7—C8178.4 (3)C18—C19—C20—C211.1 (5)
C6—C7—C8—C91.9 (5)C19—C20—C21—C221.7 (5)
C11—O—C9—C100.5 (4)C19—C20—C21—F1177.2 (3)
C11—O—C9—C8179.8 (3)C20—C21—C22—C232.4 (5)
C7—C8—C9—C100.1 (5)F1—C21—C22—C23176.5 (2)
C7—C8—C9—O179.7 (3)C19—C18—C23—C222.3 (4)
O—C9—C10—C1177.5 (2)C17—C18—C23—C22175.9 (3)
C8—C9—C10—C12.2 (4)C21—C22—C23—C180.3 (4)
C6—C1—C10—C92.3 (4)N2—C17—C24—C2940.4 (4)
C2—C1—C10—C9176.8 (3)C18—C17—C24—C2983.1 (3)
C9—O—C11—C12172.2 (3)N2—C17—C24—C25140.3 (3)
C13—N1—C12—C1189.7 (3)C18—C17—C24—C2596.2 (3)
C16—N1—C12—C11149.9 (3)C29—C24—C25—C260.3 (4)
O—C11—C12—N164.6 (4)C17—C24—C25—C26179.6 (3)
C12—N1—C13—C14176.5 (2)C24—C25—C26—C270.7 (4)
C16—N1—C13—C1455.2 (3)C25—C26—C27—C281.3 (5)
C15—N2—C14—C1360.2 (3)C25—C26—C27—F2179.1 (3)
C17—N2—C14—C13176.6 (2)C26—C27—C28—C290.8 (5)
N1—C13—C14—N259.4 (3)F2—C27—C28—C29179.6 (3)
C14—N2—C15—C1661.4 (3)C25—C24—C29—C280.8 (5)
C17—N2—C15—C16174.6 (2)C17—C24—C29—C28179.9 (3)
C12—N1—C16—C15178.1 (3)C27—C28—C29—C240.3 (5)

Experimental details

Crystal data
Chemical formulaC29H28F2N2O
Mr458.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.416 (2), 16.870 (3), 14.311 (3)
β (°) 100.57 (3)
V3)2472.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4802, 4541, 2743
Rint0.087
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.182, 1.01
No. of reflections4541
No. of parameters307
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Jiangsu Province (grant No. BK2010538).

References

First citationDai, Z.-H., Zhong, Y. & Wu, B. (2012). Acta Cryst. E68, o1077.  CSD CrossRef IUCr Journals Google Scholar
First citationDayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o968.  CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds