organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-2-({[(2-methyl­phen­yl)meth­yl]disulfan­yl}meth­yl)benzene

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 May 2012; accepted 27 May 2012; online 31 May 2012)

In the title disulfide, C16H18S2, the mol­ecule is twisted about the central S—S bond [the C—S—S—C torsion angle = 93.24 (7)°] and the dihedral angle between the benzene rings is 72.84 (7)°, indicating an almost orthogonal relationship; the methyl groups are orientated to the same side of the mol­ecule. The crystal packing features C—H⋯.π inter­actions which consolidate a three-dimensional architecture.

Related literature

For background to the coordination chemistry of dithio­carbazate derivatives, see: Crouse et al. (2004[Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161-168.]); Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For the synthesis and methodology, see: Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]). For the structure of bis­(benz­yl)disulfide, see: van Dijk & Visser (1971[Dijk, B. van & Visser, G. J. (1971). Acta Cryst. B27, 846.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18S2

  • Mr = 274.42

  • Monoclinic, P 21 /c

  • a = 10.3640 (4) Å

  • b = 7.6408 (3) Å

  • c = 18.1106 (7) Å

  • β = 91.099 (3)°

  • V = 1433.90 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.18 mm−1

  • T = 100 K

  • 0.56 × 0.38 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.299, Tmax = 0.513

  • 9993 measured reflections

  • 2773 independent reflections

  • 2672 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.06

  • 2773 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1BCg1i 0.99 2.91 3.4605 (16) 116
C16—H16BCg2ii 0.98 2.85 3.7392 (18) 151
C16—H16CCg1iii 0.98 2.97 3.7764 (18) 140
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our interest in investigating the coordination properties of ligands containing the H—N—CS moiety and our desire to expand the study of this class of biologically important compounds has lead us to synthesize series of related ligands (Tarafder et al., 2000; Crouse et al., 2004; Ravoof et al., 2010). The title compound, [(2-methyl)benzyl]disulfide, (I), was obtained during the attempt to prepare the phenyl hydrazine analogue of S-benzyldithiocarbazate.

In (I), Fig. 1, the molecule is twisted about the central S1—S2 bond as seen in the value of the C1—S1—S2—C9 torsion angle of 93.24 (7) Å. The dihedral between the benzene rings is 72.84 (7)°, indicating an almost orthogonal relationship, and the methyl groups are orientated to the same side of the molecule. The overall conformation in (I) contrasts that found in the parent compound, bis(benzyl)disulfide (van Dijk & Visser, 1971), which adopts an open conformation with both phenyl rings directed away from the sulfur atoms. In (I), the S1-bound benzyl is directed away having an anti disposition [the S2—S1—C1—C2 torsion angle is 176.23 (9)°] whereas the S2-bound benzyl residue in bis(benzyl)disulfide (van Dijk & Visser, 1971) has a syn conformation [S1—C1—C2—C7 = 91.90 (14)°].

The crystal packing is dominated by C—H···.π interactions, Table 1, which consolidates a three-dimensional architecture, Fig. 2.

Related literature top

For background to the coordination chemistry of dithiocarbazate derivatives, see: Crouse et al. (2004); Ravoof et al. (2010). For the synthesis and methodology, see: Tarafder et al. (2000). For the structure of bis(benzyl)disulfide, see: van Dijk & Visser (1971).

Experimental top

[(2-Methyl)benzyl]disulfide was isolated as a by-product from the synthesis of the phenylhydrazine analog of S-benzyldithiocarbazate (Tarafder et al., 2000). Potassium hydroxide (0.2 mol, 11.2 g) was completely dissolved in absolute ethanol (70 ml) and phenylhydrazine (0.2 mol, 21.6 g) was added to the solution cooled in an ice-salt bath producing a dark-yellow solution. Carbon disulfide (0.2 mol, 15.2 g) was added drop-wise with constant stirring over one hour. 2-Methylbenzyl chloride (0.1 mol, 13.2 ml) was then added drop-wise with vigorous stirring. The temperature of reaction was maintained below 278 K. The high yield yellow-white product was filtered and dried in a dessicator over anhydrous silica gel, dissolved in absolute ethanol and kept in a freezer. A few colourless blocks were harvested on the third day and washed with cold n-hexane.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The C—H···π interactions are shown as purple dashed lines.
1-Methyl-2-({[(2-methylphenyl)methyl]disulfanyl}methyl)benzene top
Crystal data top
C16H18S2F(000) = 584
Mr = 274.42Dx = 1.271 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 5536 reflections
a = 10.3640 (4) Åθ = 4–71°
b = 7.6408 (3) ŵ = 3.18 mm1
c = 18.1106 (7) ÅT = 100 K
β = 91.099 (3)°Block, colourless
V = 1433.90 (10) Å30.56 × 0.38 × 0.21 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2773 independent reflections
Radiation source: fine-focus sealed tube2672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1952 pixels mm-1θmax = 71.6°, θmin = 4.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 89
Tmin = 0.299, Tmax = 0.513l = 2122
9993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.5578P]
where P = (Fo2 + 2Fc2)/3
2773 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H18S2V = 1433.90 (10) Å3
Mr = 274.42Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.3640 (4) ŵ = 3.18 mm1
b = 7.6408 (3) ÅT = 100 K
c = 18.1106 (7) Å0.56 × 0.38 × 0.21 mm
β = 91.099 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2773 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2672 reflections with I > 2σ(I)
Tmin = 0.299, Tmax = 0.513Rint = 0.023
9993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
2773 reflectionsΔρmin = 0.22 e Å3
165 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19303 (3)0.79536 (5)0.531391 (19)0.01839 (13)
S20.16204 (3)0.97650 (5)0.450468 (19)0.01857 (13)
C10.32793 (14)0.6661 (2)0.49591 (8)0.0197 (3)
H1A0.30140.60580.44970.024*
H1B0.40190.74350.48530.024*
C20.36554 (14)0.5340 (2)0.55430 (8)0.0175 (3)
C30.45586 (14)0.5739 (2)0.61072 (8)0.0190 (3)
C40.48816 (15)0.4427 (2)0.66150 (8)0.0231 (3)
H40.54980.46700.69960.028*
C50.43266 (16)0.2782 (2)0.65765 (9)0.0252 (4)
H50.45710.19080.69250.030*
C60.34159 (17)0.2409 (2)0.60306 (10)0.0254 (3)
H60.30220.12870.60070.030*
C70.30838 (15)0.3688 (2)0.55173 (8)0.0216 (3)
H70.24570.34340.51430.026*
C80.51809 (16)0.7523 (2)0.61716 (10)0.0258 (4)
H8A0.57150.75740.66230.039*
H8B0.45090.84240.61910.039*
H8C0.57220.77290.57420.039*
C90.03670 (14)0.8731 (2)0.39237 (8)0.0197 (3)
H9A0.03610.83890.42390.024*
H9B0.00390.96000.35610.024*
C100.08223 (14)0.71442 (19)0.35152 (8)0.0168 (3)
C110.15632 (14)0.7299 (2)0.28736 (8)0.0187 (3)
C120.19310 (14)0.5778 (2)0.25128 (9)0.0232 (3)
H120.24070.58690.20710.028*
C130.16219 (16)0.4131 (2)0.27805 (9)0.0265 (4)
H130.18950.31110.25280.032*
C140.09121 (16)0.3982 (2)0.34191 (10)0.0262 (4)
H140.07060.28610.36100.031*
C150.05054 (15)0.5485 (2)0.37768 (9)0.0209 (3)
H150.00020.53820.42080.025*
C160.19659 (16)0.9069 (2)0.25888 (9)0.0263 (4)
H16A0.25820.96030.29390.039*
H16B0.12050.98220.25340.039*
H16C0.23730.89300.21080.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0218 (2)0.0188 (2)0.0146 (2)0.00273 (13)0.00327 (14)0.00021 (12)
S20.0244 (2)0.0138 (2)0.0175 (2)0.00018 (13)0.00079 (14)0.00113 (12)
C10.0196 (7)0.0225 (8)0.0173 (7)0.0042 (6)0.0039 (5)0.0003 (6)
C20.0176 (7)0.0187 (8)0.0164 (7)0.0027 (6)0.0046 (5)0.0009 (5)
C30.0176 (7)0.0222 (8)0.0175 (7)0.0020 (6)0.0036 (5)0.0031 (6)
C40.0223 (7)0.0301 (9)0.0169 (7)0.0060 (6)0.0009 (6)0.0017 (6)
C50.0297 (8)0.0245 (9)0.0217 (8)0.0077 (6)0.0065 (6)0.0058 (6)
C60.0290 (8)0.0188 (8)0.0285 (8)0.0014 (6)0.0074 (7)0.0007 (6)
C70.0206 (7)0.0231 (8)0.0211 (7)0.0001 (6)0.0019 (6)0.0029 (6)
C80.0257 (8)0.0254 (9)0.0263 (8)0.0030 (7)0.0003 (6)0.0047 (7)
C90.0194 (7)0.0202 (8)0.0194 (7)0.0015 (6)0.0010 (5)0.0025 (6)
C100.0167 (7)0.0182 (8)0.0155 (7)0.0006 (5)0.0024 (5)0.0006 (5)
C110.0167 (7)0.0221 (8)0.0171 (7)0.0019 (6)0.0023 (5)0.0001 (6)
C120.0186 (7)0.0313 (9)0.0196 (7)0.0003 (6)0.0000 (6)0.0070 (6)
C130.0249 (8)0.0229 (9)0.0316 (9)0.0054 (6)0.0061 (6)0.0096 (7)
C140.0306 (8)0.0151 (8)0.0325 (9)0.0022 (6)0.0087 (7)0.0021 (6)
C150.0228 (7)0.0216 (8)0.0184 (7)0.0031 (6)0.0017 (6)0.0023 (6)
C160.0305 (8)0.0281 (9)0.0203 (8)0.0084 (7)0.0024 (6)0.0026 (6)
Geometric parameters (Å, º) top
S1—C11.8377 (15)C8—H8C0.9800
S1—S22.0368 (5)C9—C101.501 (2)
S2—C91.8349 (15)C9—H9A0.9900
C1—C21.508 (2)C9—H9B0.9900
C1—H1A0.9900C10—C151.395 (2)
C1—H1B0.9900C10—C111.410 (2)
C2—C71.395 (2)C11—C121.390 (2)
C2—C31.406 (2)C11—C161.509 (2)
C3—C41.397 (2)C12—C131.389 (3)
C3—C81.511 (2)C12—H120.9500
C4—C51.384 (2)C13—C141.387 (3)
C4—H40.9500C13—H130.9500
C5—C61.383 (3)C14—C151.388 (2)
C5—H50.9500C14—H140.9500
C6—C71.387 (2)C15—H150.9500
C6—H60.9500C16—H16A0.9800
C7—H70.9500C16—H16B0.9800
C8—H8A0.9800C16—H16C0.9800
C8—H8B0.9800
C1—S1—S2102.94 (5)H8B—C8—H8C109.5
C9—S2—S1102.71 (5)C10—C9—S2113.87 (10)
C2—C1—S1107.61 (10)C10—C9—H9A108.8
C2—C1—H1A110.2S2—C9—H9A108.8
S1—C1—H1A110.2C10—C9—H9B108.8
C2—C1—H1B110.2S2—C9—H9B108.8
S1—C1—H1B110.2H9A—C9—H9B107.7
H1A—C1—H1B108.5C15—C10—C11119.47 (14)
C7—C2—C3119.79 (14)C15—C10—C9119.22 (14)
C7—C2—C1118.60 (14)C11—C10—C9121.31 (13)
C3—C2—C1121.61 (14)C12—C11—C10118.41 (14)
C4—C3—C2118.07 (15)C12—C11—C16120.55 (14)
C4—C3—C8120.01 (14)C10—C11—C16121.04 (14)
C2—C3—C8121.92 (14)C13—C12—C11121.77 (15)
C5—C4—C3121.66 (15)C13—C12—H12119.1
C5—C4—H4119.2C11—C12—H12119.1
C3—C4—H4119.2C14—C13—C12119.66 (15)
C4—C5—C6120.03 (15)C14—C13—H13120.2
C4—C5—H5120.0C12—C13—H13120.2
C6—C5—H5120.0C13—C14—C15119.47 (15)
C5—C6—C7119.40 (16)C13—C14—H14120.3
C5—C6—H6120.3C15—C14—H14120.3
C7—C6—H6120.3C14—C15—C10121.18 (15)
C6—C7—C2121.02 (15)C14—C15—H15119.4
C6—C7—H7119.5C10—C15—H15119.4
C2—C7—H7119.5C11—C16—H16A109.5
C3—C8—H8A109.5C11—C16—H16B109.5
C3—C8—H8B109.5H16A—C16—H16B109.5
H8A—C8—H8B109.5C11—C16—H16C109.5
C3—C8—H8C109.5H16A—C16—H16C109.5
H8A—C8—H8C109.5H16B—C16—H16C109.5
C1—S1—S2—C993.24 (7)S1—S2—C9—C1068.30 (11)
S2—S1—C1—C2176.23 (9)S2—C9—C10—C15102.14 (14)
S1—C1—C2—C791.90 (14)S2—C9—C10—C1177.83 (16)
S1—C1—C2—C387.97 (15)C15—C10—C11—C121.4 (2)
C7—C2—C3—C41.9 (2)C9—C10—C11—C12178.67 (13)
C1—C2—C3—C4178.24 (13)C15—C10—C11—C16177.79 (14)
C7—C2—C3—C8178.44 (14)C9—C10—C11—C162.2 (2)
C1—C2—C3—C81.4 (2)C10—C11—C12—C132.0 (2)
C2—C3—C4—C50.7 (2)C16—C11—C12—C13177.16 (14)
C8—C3—C4—C5179.60 (15)C11—C12—C13—C140.9 (2)
C3—C4—C5—C60.8 (2)C12—C13—C14—C150.9 (2)
C4—C5—C6—C71.1 (2)C13—C14—C15—C101.5 (2)
C5—C6—C7—C20.1 (2)C11—C10—C15—C140.4 (2)
C3—C2—C7—C61.6 (2)C9—C10—C15—C14179.62 (14)
C1—C2—C7—C6178.51 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg1i0.992.913.4605 (16)116
C16—H16B···Cg2ii0.982.853.7392 (18)151
C16—H16C···Cg1iii0.982.973.7764 (18)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC16H18S2
Mr274.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.3640 (4), 7.6408 (3), 18.1106 (7)
β (°) 91.099 (3)
V3)1433.90 (10)
Z4
Radiation typeCu Kα
µ (mm1)3.18
Crystal size (mm)0.56 × 0.38 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.299, 0.513
No. of measured, independent and
observed [I > 2σ(I)] reflections
9993, 2773, 2672
Rint0.023
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.06
No. of reflections2773
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.22

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg1i0.992.913.4605 (16)116
C16—H16B···Cg2ii0.982.853.7392 (18)151
C16—H16C···Cg1iii0.982.973.7764 (18)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) through the purchase of the diffractometer and under their Research University Grant Scheme (RUGS No. 9174000), the Malaysian Ministry of Science, Technology and Innovation (grant No. 09-02-04-0752-EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01-13-11-986FR). The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCrouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationDijk, B. van & Visser, G. J. (1971). Acta Cryst. B27, 846.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds