organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1833-o1834

A bis-calixarene from olefin metathesis

aDepartment of Chemistry, Howard University, 525 College Street, NW, Washington, DC 2059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 19 March 2012; accepted 16 May 2012; online 23 May 2012)

A ring-closing olefin metathesis reaction of tetra­kis­(all­yl­oxy)calix[4]arene gave the bis­ calixarene, (15E,40E,60E)-65,74-bis­(prop-2-en-1-yl­oxy)-13,18,38,43,58,63-hexa­oxado­deca­cyclo­[28.26.8.720,36.111,45.151,55.05,57.07,12.019,24.026,64.032,37.044,49.168,72]tetra­hepta­conta-1,3,5(57),7,9,11,15,19(24),20,22,26,28,30(64),32,34,36,40,44(49),45,47,51,53,55(65),60,68,70,72(74)-hepta­cosa­ene, C74H68O8. It is a cage formed from two calix[4]arene units joined by butenyl groups at three of the O atoms on the narrow rim. The fourth O atom on each calixarene unit is joined with an allyl group. Each of the calix[4]arene units has a flattened cone conformation in which the all­yloxy-substituted aryl group and the opposite aryl group are close together and almost parallel [dihedral angle between planes = 1.09 (11)°], and the other two aryl groups are splayed outward [dihedral angle between planes = 79.53 (11)°]. No guest mol­ecule (e.g. solvent) was observed within the cage. The alkene C atoms of one of the links between the calixarene moieties are disordered over two orientations with occupancies of 0.533 (9) and 0.467 (9).

Related literature

For structures of simple flattened cone calix[4]arenes, see: Arduini et al. (1996b[Arduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996b). J. Org. Chem. 61, 6881-6887.]); Drew et al. (1997[Drew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472-474.]). For the structure of a bis­ calix[4]arene in a flattened cone conformation, see Arduini et al. (1995[Arduini, A., Fanni, S., Manfredi, G., Pochini, A., Ungaro, R., Sicuri, A. R. & Ugozzoli, F. (1995). J. Org. Chem. 60, 1448-1453.]). For the use of calixarenes in mol­ecular recognition, see: Gutsche (2008)[Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddard. Cambridge: The Royal Society of Chemistry.]; Asfari et al. (2001[Asfari, Z., Böhmer, V., Harrowfield, J. & Vicens, J. (2001). In Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.]). For the use of the olefin metathesis reaction to produce bridged calixarenes, see: Vougioukalakis & Grubbs (2010[Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746-1787.]); Yang & Swager (2007[Yang, Y. & Swager, T. M. (2007). Macromolecules, 40, 7437-7440.]). For background to symmetrical calixarenes, see: Andreetti et al. (1983[Andreetti, G. D., Pochini, A. & Ungaro, R. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 1773-1779.]); Xu et al. (1994[Xu, W., Puddephatt, R. J., Manojlovic-Muir, L., Muir, K. W. & Frampton, C. S. (1994). J. Inclusion Phenom. Mol. Recognit. Chem. 19, 277-290.]). For details of rigidified calixarenes, see: Arduini et al. (1996a[Arduini, A., McGregor, W. M., Paganuzzi, D., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996a). J. Chem. Soc. Perkin Trans. 2, pp. 839-846.]). For their synthesis and characterization, see: Ho et al. (1996[Ho, Z., Ku, M., Shu, C. & Lin, L. (1996). Tetrahedron, 52, 13189-13200.]); Jaime et al. (1991[Jaime, C., de Mendoza, J., Prados, P., Nieto, P. M. & Sánchez, C. (1991). J. Org. Chem. 56, 3372-3376.]).

[Scheme 1]

Experimental

Crystal data
  • C74H68O8

  • Mr = 1085.28

  • Monoclinic, C 2/c

  • a = 29.075 (3) Å

  • b = 12.1376 (11) Å

  • c = 16.9475 (7) Å

  • β = 94.992 (5)°

  • V = 5958.1 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 295 K

  • 0.52 × 0.37 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.836, Tmax = 1.000

  • 10606 measured reflections

  • 5644 independent reflections

  • 3637 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.261

  • S = 1.15

  • 5644 reflections

  • 366 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Calixarenes are widely used in molecular recognition. They are of particular interest because they can be prepared on large scale and can be modified with a variety of substituents at their upper and lower rims (Gutsche, 2008; Asfari et al., 2001). The olefin metathesis reaction (Vougioukalakis et al., 2010) has been used to prepare bridged calixarenes (Yang et al., 2007).

In an attempt to prepare calixarenes with small bridges using ring-closing olefin metathesis, a novel bis-calix[4]arene was isolated. The crystal structure shows that the calixarene units in the cage are in a flattened or pinched conformation. For example, the distance across the ring between para carbons C4A and C4C is 9.696 (7) Å, while the distance between C4B and C4D is 5.298 (6) Å. The degree of flattening of a cone calix[4]arene is frequently described (Arduini et al. 1995; Arduini et al. 1996b; Drew et al. 1997) using the least squares plane of the four bridging methylene groups (C7A, C7B, C7C, C7D) and the dihedral angles of the phenolic rings with this plane. Rings B [90.8 (1)°] and D [91.91 (9)°] are almost perpendicular to this plane, while rings A [136.3 (1)°] and C [144.10 (9)°] are splayed outward. For comparison with more symmetrical calixarenes, equivalent dihedral angles in t-butylcalix[4]arene with simple guests are about 123° (Andreetti et al., 1983; Xu et al., 1994) while those in a calix[4]arene rigidified with bridges from diethylene glycol are about 115–118° (Arduini et al., 1996a).

Related literature top

For structures of simple flattened cone calix[4]arenes, see: Arduini et al. (1996b); Drew et al. (1997). For the structure of a bis calix[4]arene in a flattened cone conformation, see Arduini et al. (1995). For the use of calixarenes in molecular recognition, see: Gutsche (2008); Asfari et al. (2001). For the use of the olefin metathesis reaction to produce bridged calixarenes, see: Vougioukalakis & Grubbs (2010); Yang & Swager (2007). For background to symmetrical calixarenes, see: Andreetti et al. (1983); Xu et al. (1994). For details of rigidified calixarenes, see: Arduini et al. (1996a). For their synthesis and characterization, see: Ho et al. (1996); Jaime et al. (1991).

Experimental top

A 22-mg (0.027 mmol) sample of first generation Grubbs catalyst was weighed into a 100 ml 3-necked flask in a glove bag under nitrogen. The flask was then connected to a nitrogen line, and 50 ml of dichloromethane (distilled from CaH2) followed by 62 mg (0.106 mmol) of tetrakis(allyloxy)calix[4]arene (Ho et al., 1996) in 5 ml of dichloromethane were each added by syringe. The resulting mixture was stirred under reflux (oil bath temperature 45 °C) for 3.5 h. Solvent was removed on a rotary evaporator, and the residue was suspended in 3 ml of dichloromethane and chromatographed (35 g of silica gel, 2.5 x 22.5 cm, gradient elution with hexane/dichloromethane). White crystals (2 mg) suitable for X-ray diffraction were obtained from a fraction using hexane/dichloromethane 2:3.

In a similar experiment (10 mg catalyst, 57 ml of dichloromethane, 45 mg of tetrakis(allyloxy)calix[4]arene, 45 °C for 6 h), 22 mg of a white powder was obtained after chromatography, having a nearly identical 1H NMR spectrum to the crystals used for X-ray.

The MALDI-TOF MS shows m/z 1108.84 ([M + Na]+ calcd for C74H68O8Na: 1107.48). The 1H NMR spectrum includes four doublets between δ 3.0 and 3.3 which show COSY correlations with doublets in the range 4.1–4.7: δ 3.03 (J = 13 Hz) and overlapping doublets at 3.20 (J = ca 14 Hz), 3.23 (J = ca 13 Hz), and 3.26 (J = ca 12.5 Hz), correlated with 4.46 (one of two overlapping doublets, J = ca 13 Hz), 4.38 (J = 14 Hz), 4.46 (J = ca 13 Hz), and 4.59 (J = 12.5 Hz), respectively. These are assigned as ArCH2Ar protons. (There are additional peaks in the range δ 4.1–4.7 assigned as OCH2C=C protons, and a few other COSY correlations within the area.) The HMQC spectrum shows correlations between the 1H doublets at δ 3.0–3.3 and 13C peaks at δ 30–32, indicating that adjacent phenolic rings in the ArCH2Ar are in a syn conformation (Jaime et al., 1991), consistent with the cone structure of the calixarene rings. (The 1H peaks from 4.1–4.7 correlate with 13C peaks at δ 75–76 and at 30–32, confirming that area contains OCH2C=C protons as well as ArCH2Ar with syn phenolic rings.) The remainder of the 1H NMR spectrum shows peaks at δ 5.2–5.35 (m, includes 5.30, CH2Cl2), 5.49 (apparent dq, J = 17, 1.5 Hz), 6.15–6.45 (m), and 6.7–7.25 [includes 6.87 (t, J = 7.5 Hz), 7.02 (apparent t, J = ca 7.5 Hz), 7.22 (apparent td, J = 7.2, 1.6 Hz)]. Other COSY correlations include the peaks in the area about δ 4.2 with δ 5.2–5.35 and the area 6.15–6.45, and the peaks in the areas δ 5.2–5.35 and 5.49 with the area 6.15–6.45.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 - 0.97Å Uiso(H) = 1.2Ueq(C). The alkene carbon atoms of one of the links between the calixarene moities were disordered over two orientations with occupancies of 0.543 (9) and 0.457 (9). Since this was on a symmetry element the usual idealizing parameters of SHELXTL could not be used and its position was generated and then fixed.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C74H68O8 with atomic displacement parameters drawn at 30% probability. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The molecular packing for C74H68O8 viewed along the a axis.
(15E,40E,60E)-65,74-bis(prop-2-en-1-yloxy)- 13,18,38,43,58,63-hexaoxadodecacyclo[28.26.8.720,36.111,45.151,55. 05,57.07,12.019,24.026,64.032,37.044,49.168,72]tetraheptaconta- 1,3,5(57),7,9,11,15,19 (24),20,22,26,28,30 (64),32,34,36,40,44 (49),45,47,51,53, 55 (65),60,68,70,72 (74)-heptacosaene top
Crystal data top
C74H68O8F(000) = 2304
Mr = 1085.28Dx = 1.210 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 3491 reflections
a = 29.075 (3) Åθ = 4.7–73.7°
b = 12.1376 (11) ŵ = 0.61 mm1
c = 16.9475 (7) ÅT = 295 K
β = 94.992 (5)°Triangular plate, colorless
V = 5958.1 (8) Å30.52 × 0.37 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5644 independent reflections
Radiation source: Enhance (Cu) X-ray Source3637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.5081 pixels mm-1θmax = 73.8°, θmin = 4.7°
ω scansh = 2836
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1314
Tmin = 0.836, Tmax = 1.000l = 2116
10606 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.261 w = 1/[σ2(Fo2) + (0.1069P)2 + 5.7734P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
5644 reflectionsΔρmax = 0.30 e Å3
366 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00041 (8)
Crystal data top
C74H68O8V = 5958.1 (8) Å3
Mr = 1085.28Z = 4
Monoclinic, C2/cCu Kα radiation
a = 29.075 (3) ŵ = 0.61 mm1
b = 12.1376 (11) ÅT = 295 K
c = 16.9475 (7) Å0.52 × 0.37 × 0.12 mm
β = 94.992 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5644 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
3637 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 1.000Rint = 0.036
10606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.261H-atom parameters constrained
S = 1.15Δρmax = 0.30 e Å3
5644 reflectionsΔρmin = 0.26 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.59359 (7)0.4051 (2)0.41115 (13)0.0690 (7)
O20.58527 (7)0.3355 (2)0.22594 (12)0.0681 (7)
O30.58626 (8)0.1341 (2)0.35098 (12)0.0694 (7)
O40.57024 (7)0.1938 (2)0.53045 (13)0.0717 (7)
C1A0.63263 (11)0.4660 (3)0.43636 (19)0.0649 (9)
C2A0.64766 (11)0.4639 (3)0.51682 (19)0.0665 (9)
C3A0.68448 (12)0.5314 (4)0.5429 (2)0.0787 (11)
H3AA0.69430.53380.59650.094*
C4A0.70666 (13)0.5947 (4)0.4906 (3)0.0814 (11)
H4AA0.73060.64150.50910.098*
C5A0.69337 (13)0.5888 (4)0.4107 (2)0.0807 (11)
H5AA0.70950.62890.37540.097*
C6A0.65613 (12)0.5235 (3)0.3821 (2)0.0723 (10)
C7A0.64367 (14)0.5090 (4)0.2938 (2)0.0811 (11)
H7AA0.61040.51170.28260.097*
H7AB0.65690.56860.26510.097*
C8A0.55283 (13)0.4721 (4)0.4108 (3)0.0912 (13)
H8AA0.55170.52250.36630.109*
H8AB0.55410.51530.45900.109*
C9A0.51112 (12)0.4038 (4)0.4050 (2)0.0797 (11)
H9AA0.51080.34310.43840.096*
C1B0.63259 (10)0.3144 (4)0.23692 (16)0.0660 (10)
C2B0.66176 (12)0.3996 (4)0.26629 (18)0.0727 (10)
C3B0.70895 (13)0.3795 (5)0.2737 (2)0.0897 (13)
H3BA0.72910.43530.29190.108*
C4B0.72650 (13)0.2785 (5)0.2546 (3)0.1056 (17)
H4BA0.75830.26730.25820.127*
C5B0.69700 (13)0.1945 (5)0.2302 (2)0.0901 (13)
H5BA0.70910.12570.21960.108*
C6B0.64943 (11)0.2099 (4)0.22110 (17)0.0712 (10)
C7B0.61803 (12)0.1137 (3)0.19976 (18)0.0715 (10)
H7BA0.62450.08520.14840.086*
H7BB0.58620.13850.19590.086*
C8B0.56962 (12)0.3605 (4)0.1452 (2)0.0771 (11)
H8BA0.56510.29280.11500.092*
H8BB0.59260.40450.12140.092*
C9B0.52596 (12)0.4215 (4)0.1436 (2)0.0812 (11)
H9BA0.52440.47790.18040.097*
C1C0.60871 (11)0.0377 (3)0.33555 (18)0.0663 (9)
C2C0.62429 (12)0.0228 (4)0.26061 (19)0.0711 (10)
C3C0.64677 (15)0.0752 (4)0.2457 (2)0.0891 (13)
H3CA0.65720.08750.19610.107*
C4C0.65359 (17)0.1532 (5)0.3031 (3)0.1015 (15)
H4CA0.66780.21910.29150.122*
C5C0.63993 (16)0.1371 (4)0.3784 (3)0.0922 (13)
H5CA0.64570.19080.41720.111*
C6C0.61758 (12)0.0402 (3)0.3957 (2)0.0720 (10)
C7C0.60590 (13)0.0143 (4)0.47897 (19)0.0747 (10)
H7CA0.57370.00680.47800.090*
H7CB0.61050.07950.51180.090*
C8C0.53692 (13)0.1233 (4)0.3494 (2)0.0798 (11)
H8CA0.52990.05530.37590.096*
H8CB0.52520.18360.37950.096*
C9CA0.5171 (3)0.0887 (9)0.2713 (5)0.074 (2)0.467 (9)
H9CA0.52430.01640.25290.089*0.467 (9)
C9CB0.50963 (7)0.1508 (2)0.27494 (10)0.074 (2)0.53
H9CB0.51190.22560.25740.089*0.533 (9)
C1D0.61777 (7)0.1797 (2)0.53531 (10)0.0647 (9)
C2D0.63587 (7)0.0782 (2)0.51416 (10)0.0679 (9)
C3D0.68347 (7)0.0648 (2)0.52266 (10)0.0782 (11)
H3DA0.69620.00240.50960.094*
C4D0.71216 (12)0.1491 (4)0.5500 (2)0.0835 (12)
H4DA0.74390.13790.55730.100*
C5D0.69375 (12)0.2501 (4)0.5666 (2)0.0763 (11)
H5DA0.71330.30770.58340.092*
C6D0.64619 (11)0.2673 (3)0.55867 (16)0.0643 (9)
C7D0.62721 (12)0.3825 (3)0.57134 (19)0.0730 (10)
H7DA0.59390.38190.56100.088*
H7DB0.63470.40470.62590.088*
C8D0.55093 (15)0.1671 (6)0.6025 (3)0.1125 (18)
H8DA0.55450.08880.61280.135*
H8DB0.56750.20650.64600.135*
C9D0.5037 (3)0.1951 (8)0.5987 (6)0.182 (4)
H9DA0.48840.17430.55060.219*
C10D0.4787 (4)0.2373 (8)0.6397 (10)0.288 (8)
H10D0.48980.26200.68970.345*
H10E0.44770.24620.62230.345*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0565 (12)0.0839 (18)0.0637 (12)0.0043 (11)0.0118 (9)0.0064 (11)
O20.0485 (11)0.1003 (19)0.0542 (11)0.0027 (11)0.0044 (8)0.0065 (11)
O30.0688 (13)0.0835 (17)0.0540 (11)0.0196 (12)0.0049 (9)0.0080 (11)
O40.0535 (12)0.100 (2)0.0609 (12)0.0085 (12)0.0013 (9)0.0023 (12)
C1A0.0536 (16)0.075 (2)0.0636 (17)0.0054 (16)0.0106 (13)0.0083 (16)
C2A0.0591 (17)0.078 (2)0.0608 (17)0.0092 (17)0.0048 (13)0.0108 (16)
C3A0.067 (2)0.098 (3)0.068 (2)0.007 (2)0.0155 (16)0.018 (2)
C4A0.066 (2)0.080 (3)0.095 (3)0.0015 (19)0.0138 (19)0.014 (2)
C5A0.072 (2)0.078 (3)0.089 (2)0.008 (2)0.0087 (18)0.004 (2)
C6A0.067 (2)0.078 (3)0.069 (2)0.0019 (18)0.0106 (15)0.0029 (18)
C7A0.085 (2)0.088 (3)0.067 (2)0.005 (2)0.0115 (17)0.018 (2)
C8A0.061 (2)0.099 (3)0.108 (3)0.011 (2)0.023 (2)0.015 (2)
C9A0.0617 (19)0.096 (3)0.078 (2)0.0033 (19)0.0125 (16)0.018 (2)
C1B0.0465 (15)0.107 (3)0.0432 (14)0.0035 (17)0.0012 (11)0.0074 (16)
C2B0.0606 (18)0.107 (3)0.0492 (15)0.0090 (19)0.0032 (13)0.0087 (17)
C3B0.059 (2)0.135 (4)0.074 (2)0.019 (2)0.0025 (16)0.007 (2)
C4B0.0482 (19)0.169 (5)0.098 (3)0.003 (3)0.0008 (18)0.024 (3)
C5B0.0579 (19)0.132 (4)0.079 (2)0.015 (2)0.0018 (16)0.020 (2)
C6B0.0536 (16)0.113 (3)0.0467 (15)0.0053 (19)0.0024 (12)0.0061 (17)
C7B0.071 (2)0.095 (3)0.0465 (15)0.0061 (19)0.0041 (13)0.0080 (16)
C8B0.0589 (18)0.108 (3)0.0619 (18)0.001 (2)0.0093 (14)0.0184 (19)
C9B0.062 (2)0.095 (3)0.082 (2)0.001 (2)0.0150 (16)0.012 (2)
C1C0.0586 (17)0.085 (3)0.0536 (16)0.0139 (17)0.0049 (13)0.0087 (16)
C2C0.0690 (19)0.089 (3)0.0535 (16)0.0106 (19)0.0028 (14)0.0113 (17)
C3C0.092 (3)0.108 (4)0.067 (2)0.027 (3)0.0057 (18)0.022 (2)
C4C0.108 (3)0.102 (4)0.095 (3)0.039 (3)0.010 (2)0.012 (3)
C5C0.096 (3)0.094 (3)0.085 (3)0.029 (3)0.000 (2)0.001 (2)
C6C0.070 (2)0.085 (3)0.0594 (17)0.0151 (19)0.0034 (14)0.0037 (17)
C7C0.077 (2)0.087 (3)0.0585 (18)0.007 (2)0.0002 (15)0.0088 (17)
C8C0.071 (2)0.105 (3)0.0619 (18)0.029 (2)0.0044 (15)0.0087 (19)
C9CA0.054 (3)0.102 (6)0.064 (2)0.018 (4)0.0017 (17)0.007 (4)
C9CB0.054 (3)0.102 (6)0.064 (2)0.018 (4)0.0017 (17)0.007 (4)
C1D0.0522 (16)0.101 (3)0.0400 (13)0.0071 (17)0.0002 (11)0.0025 (15)
C2D0.0634 (18)0.098 (3)0.0417 (14)0.0096 (19)0.0020 (12)0.0098 (16)
C3D0.067 (2)0.105 (3)0.0628 (18)0.018 (2)0.0035 (15)0.004 (2)
C4D0.0539 (18)0.121 (4)0.075 (2)0.015 (2)0.0009 (15)0.013 (2)
C5D0.0571 (18)0.108 (3)0.0625 (18)0.004 (2)0.0027 (14)0.0051 (19)
C6D0.0594 (17)0.091 (3)0.0418 (13)0.0064 (17)0.0001 (12)0.0029 (15)
C7D0.0664 (19)0.100 (3)0.0519 (16)0.0044 (19)0.0002 (14)0.0155 (17)
C8D0.077 (3)0.166 (5)0.099 (3)0.022 (3)0.031 (2)0.036 (3)
C9D0.116 (5)0.224 (10)0.218 (8)0.028 (6)0.078 (5)0.044 (7)
C10D0.197 (10)0.154 (9)0.54 (2)0.044 (8)0.182 (13)0.068 (12)
Geometric parameters (Å, º) top
O1—C1A1.391 (4)C8B—H8BA0.9700
O1—C8A1.437 (4)C8B—H8BB0.9700
O2—C1B1.396 (4)C9B—C9Ai1.316 (5)
O2—C8B1.437 (4)C9B—H9BA0.9300
O3—C1C1.376 (4)C1C—C2C1.397 (5)
O3—C8C1.439 (4)C1C—C6C1.397 (5)
O4—C1D1.388 (3)C2C—C3C1.391 (6)
O4—C8D1.426 (5)C3C—C4C1.360 (7)
C1A—C6A1.381 (5)C3C—H3CA0.9300
C1A—C2A1.395 (4)C4C—C5C1.383 (6)
C2A—C3A1.390 (5)C4C—H4CA0.9300
C2A—C7D1.509 (5)C5C—C6C1.388 (6)
C3A—C4A1.375 (6)C5C—H5CA0.9300
C3A—H3AA0.9300C6C—C7C1.514 (5)
C4A—C5A1.376 (6)C7C—C2D1.511 (5)
C4A—C4C9.697 (7)C7C—H7CA0.9700
C4A—H4AA0.9300C7C—H7CB0.9700
C5A—C6A1.395 (5)C8C—C9CA1.459 (9)
C5A—H5AA0.9300C8C—C9CB1.469 (4)
C6A—C7A1.519 (5)C8C—H8CA0.9701
C7A—C2B1.516 (6)C8C—H8CB0.9699
C7A—H7AA0.9700C9CA—H9CA0.9600
C7A—H7AB0.9700C9CB—H9CB0.9600
C8A—C9A1.465 (6)C1D—C6D1.383 (4)
C8A—H8AA0.9700C1D—C2D1.3991
C8A—H8AB0.9700C2D—C3D1.3884
C9A—C9Bi1.316 (5)C3D—C4D1.375 (5)
C9A—H9AA0.9300C3D—H3DA0.9300
C1B—C6B1.394 (5)C4D—C5D1.377 (6)
C1B—C2B1.401 (5)C4D—H4DA0.9300
C2B—C3B1.388 (5)C5D—C6D1.393 (5)
C3B—C4B1.377 (7)C5D—H5DA0.9300
C3B—H3BA0.9300C6D—C7D1.526 (5)
C4B—C5B1.373 (7)C7D—H7DA0.9700
C4B—C4D5.299 (6)C7D—H7DB0.9700
C4B—H4BA0.9300C8D—C9D1.411 (8)
C5B—C6B1.391 (5)C8D—H8DA0.9700
C5B—H5BA0.9300C8D—H8DB0.9700
C6B—C7B1.507 (5)C9D—C10D1.166 (12)
C7B—C2C1.510 (5)C9D—H9DA0.9300
C7B—H7BA0.9700C10D—H10D0.9300
C7B—H7BB0.9700C10D—H10E0.9300
C8B—C9B1.468 (5)
C1A—O1—C8A110.6 (3)O3—C1C—C6C119.8 (3)
C1B—O2—C8B113.1 (2)C2C—C1C—C6C121.4 (3)
C1C—O3—C8C114.1 (3)C3C—C2C—C1C118.1 (4)
C1D—O4—C8D112.7 (2)C3C—C2C—C7B122.1 (3)
C6A—C1A—O1120.1 (3)C1C—C2C—C7B119.8 (3)
C6A—C1A—C2A122.0 (3)C4C—C3C—C2C120.5 (4)
O1—C1A—C2A117.9 (3)C4C—C3C—H3CA119.8
C3A—C2A—C1A117.8 (4)C2C—C3C—H3CA119.8
C3A—C2A—C7D121.7 (3)C3C—C4C—C5C121.8 (4)
C1A—C2A—C7D120.3 (3)C3C—C4C—C4A65.9 (3)
C4A—C3A—C2A121.1 (3)C5C—C4C—C4A67.4 (3)
C4A—C3A—H3AA119.4C3C—C4C—H4CA119.1
C2A—C3A—H3AA119.4C5C—C4C—H4CA119.1
C3A—C4A—C5A119.8 (4)C4A—C4C—H4CA144.5
C3A—C4A—C4C67.5 (2)C4C—C5C—C6C119.4 (4)
C5A—C4A—C4C66.8 (3)C4C—C5C—H5CA120.3
C3A—C4A—H4AA120.1C6C—C5C—H5CA120.3
C5A—C4A—H4AA120.1C5C—C6C—C1C118.7 (3)
C4C—C4A—H4AA140.7C5C—C6C—C7C121.3 (4)
C4A—C5A—C6A121.0 (4)C1C—C6C—C7C119.8 (3)
C4A—C5A—H5AA119.5C2D—C7C—C6C110.7 (3)
C6A—C5A—H5AA119.5C2D—C7C—H7CA109.5
C1A—C6A—C5A118.0 (3)C6C—C7C—H7CA109.5
C1A—C6A—C7A120.6 (3)C2D—C7C—H7CB109.5
C5A—C6A—C7A121.3 (4)C6C—C7C—H7CB109.5
C2B—C7A—C6A110.1 (3)H7CA—C7C—H7CB108.1
C2B—C7A—H7AA109.6O3—C8C—C9CA110.9 (4)
C6A—C7A—H7AA109.6O3—C8C—C9CB117.3 (3)
C2B—C7A—H7AB109.6C9CA—C8C—C9CB31.2 (4)
C6A—C7A—H7AB109.6O3—C8C—H8CA108.5
H7AA—C7A—H7AB108.1C9CA—C8C—H8CA95.3
O1—C8A—C9A111.0 (4)C9CB—C8C—H8CA118.1
O1—C8A—H8AA109.4O3—C8C—H8CB108.4
C9A—C8A—H8AA109.4C9CA—C8C—H8CB124.4
O1—C8A—H8AB109.4C9CB—C8C—H8CB95.3
C9A—C8A—H8AB109.4H8CA—C8C—H8CB107.5
H8AA—C8A—H8AB108.0C8C—C9CA—H9CA118.5
C9Bi—C9A—C8A125.3 (5)C8C—C9CB—H9CB115.7
C9Bi—C9A—H9AA117.3C6D—C1D—O4119.3 (2)
C8A—C9A—H9AA117.3C6D—C1D—C2D121.44 (16)
C6B—C1B—O2120.0 (3)O4—C1D—C2D119.20 (15)
C6B—C1B—C2B121.9 (3)C3D—C2D—C1D118.0
O2—C1B—C2B118.1 (4)C3D—C2D—C7C119.31 (17)
C3B—C2B—C1B117.7 (4)C1D—C2D—C7C122.58 (17)
C3B—C2B—C7A119.5 (4)C4D—C3D—C2D121.22 (19)
C1B—C2B—C7A122.7 (3)C4D—C3D—H3DA119.4
C4B—C3B—C2B121.2 (4)C2D—C3D—H3DA119.4
C4B—C3B—H3BA119.4C3D—C4D—C5D119.7 (3)
C2B—C3B—H3BA119.4C3D—C4D—C4B89.82 (19)
C5B—C4B—C3B119.8 (4)C5D—C4D—C4B89.6 (2)
C5B—C4B—C4D88.0 (3)C3D—C4D—H4DA120.1
C3B—C4B—C4D88.9 (3)C5D—C4D—H4DA120.1
C5B—C4B—H4BA120.1C4B—C4D—H4DA90.6
C3B—C4B—H4BA120.1C4D—C5D—C6D120.9 (4)
C4D—C4B—H4BA93.1C4D—C5D—H5DA119.5
C4B—C5B—C6B121.5 (5)C6D—C5D—H5DA119.5
C4B—C5B—H5BA119.2C1D—C6D—C5D118.4 (3)
C6B—C5B—H5BA119.2C1D—C6D—C7D122.0 (3)
C5B—C6B—C1B117.6 (4)C5D—C6D—C7D119.4 (4)
C5B—C6B—C7B119.9 (4)C2A—C7D—C6D110.3 (3)
C1B—C6B—C7B122.4 (3)C2A—C7D—H7DA109.6
C6B—C7B—C2C111.6 (3)C6D—C7D—H7DA109.6
C6B—C7B—H7BA109.3C2A—C7D—H7DB109.6
C2C—C7B—H7BA109.3C6D—C7D—H7DB109.6
C6B—C7B—H7BB109.3H7DA—C7D—H7DB108.1
C2C—C7B—H7BB109.3C9D—C8D—O4111.1 (5)
H7BA—C7B—H7BB108.0C9D—C8D—H8DA109.4
O2—C8B—C9B109.0 (3)O4—C8D—H8DA109.4
O2—C8B—H8BA109.9C9D—C8D—H8DB109.4
C9B—C8B—H8BA109.9O4—C8D—H8DB109.4
O2—C8B—H8BB109.9H8DA—C8D—H8DB108.0
C9B—C8B—H8BB109.9C10D—C9D—C8D137.1 (13)
H8BA—C8B—H8BB108.3C10D—C9D—H9DA111.4
C9Ai—C9B—C8B126.1 (4)C8D—C9D—H9DA111.4
C9Ai—C9B—H9BA116.9C9D—C10D—H10D120.0
C8B—C9B—H9BA116.9C9D—C10D—H10E120.0
O3—C1C—C2C118.7 (3)H10D—C10D—H10E120.0
C8A—O1—C1A—C6A89.4 (4)C6B—C7B—C2C—C3C106.7 (4)
C8A—O1—C1A—C2A92.6 (4)C6B—C7B—C2C—C1C70.9 (4)
C6A—C1A—C2A—C3A6.9 (5)C1C—C2C—C3C—C4C0.6 (6)
O1—C1A—C2A—C3A175.1 (3)C7B—C2C—C3C—C4C177.0 (4)
C6A—C1A—C2A—C7D167.4 (3)C2C—C3C—C4C—C5C2.0 (8)
O1—C1A—C2A—C7D10.6 (5)C2C—C3C—C4C—C4A41.5 (3)
C1A—C2A—C3A—C4A2.7 (6)C3A—C4A—C4C—C3C140.1 (4)
C7D—C2A—C3A—C4A171.5 (4)C5A—C4A—C4C—C3C0.4 (4)
C2A—C3A—C4A—C5A2.2 (6)C3A—C4A—C4C—C5C4.1 (3)
C2A—C3A—C4A—C4C45.5 (3)C5A—C4A—C4C—C5C143.8 (4)
C3A—C4A—C5A—C6A3.2 (6)C3C—C4C—C5C—C6C1.7 (8)
C4C—C4A—C5A—C6A46.8 (3)C4A—C4C—C5C—C6C40.7 (4)
O1—C1A—C6A—C5A176.1 (3)C4C—C5C—C6C—C1C1.2 (7)
C2A—C1A—C6A—C5A6.0 (6)C4C—C5C—C6C—C7C174.3 (4)
O1—C1A—C6A—C7A8.1 (5)O3—C1C—C6C—C5C179.5 (3)
C2A—C1A—C6A—C7A169.8 (4)C2C—C1C—C6C—C5C3.9 (6)
C4A—C5A—C6A—C1A0.8 (6)O3—C1C—C6C—C7C4.9 (5)
C4A—C5A—C6A—C7A174.9 (4)C2C—C1C—C6C—C7C171.7 (3)
C1A—C6A—C7A—C2B75.1 (5)C5C—C6C—C7C—C2D109.3 (4)
C5A—C6A—C7A—C2B100.5 (4)C1C—C6C—C7C—C2D66.2 (4)
C1A—O1—C8A—C9A165.0 (3)C1C—O3—C8C—C9CA61.5 (6)
O1—C8A—C9A—C9Bi132.9 (4)C1C—O3—C8C—C9CB95.1 (4)
C8B—O2—C1B—C6B82.8 (4)C8D—O4—C1D—C6D90.8 (4)
C8B—O2—C1B—C2B99.2 (4)C8D—O4—C1D—C2D91.1 (4)
C6B—C1B—C2B—C3B4.8 (5)C6D—C1D—C2D—C3D4.56 (16)
O2—C1B—C2B—C3B177.2 (3)O4—C1D—C2D—C3D177.40 (13)
C6B—C1B—C2B—C7A171.9 (3)C6D—C1D—C2D—C7C172.3 (3)
O2—C1B—C2B—C7A6.0 (4)O4—C1D—C2D—C7C5.71 (19)
C6A—C7A—C2B—C3B61.7 (5)C6C—C7C—C2D—C3D60.4 (3)
C6A—C7A—C2B—C1B115.0 (4)C6C—C7C—C2D—C1D116.5 (2)
C1B—C2B—C3B—C4B1.5 (6)C1D—C2D—C3D—C4D0.8 (2)
C7A—C2B—C3B—C4B175.4 (4)C7C—C2D—C3D—C4D176.2 (3)
C2B—C3B—C4B—C5B2.2 (7)C2D—C3D—C4D—C5D2.5 (4)
C2B—C3B—C4B—C4D89.3 (4)C2D—C3D—C4D—C4B91.92 (12)
C3B—C4B—C5B—C6B2.7 (7)C5B—C4B—C4D—C3D1.1 (3)
C4D—C4B—C5B—C6B90.3 (4)C3B—C4B—C4D—C3D121.0 (3)
C4B—C5B—C6B—C1B0.6 (6)C5B—C4B—C4D—C5D118.6 (4)
C4B—C5B—C6B—C7B175.8 (4)C3B—C4B—C4D—C5D1.2 (3)
O2—C1B—C6B—C5B177.7 (3)C3D—C4D—C5D—C6D2.2 (5)
C2B—C1B—C6B—C5B4.4 (5)C4B—C4D—C5D—C6D91.8 (3)
O2—C1B—C6B—C7B6.1 (4)O4—C1D—C6D—C5D177.1 (2)
C2B—C1B—C6B—C7B171.8 (3)C2D—C1D—C6D—C5D4.8 (3)
C5B—C6B—C7B—C2C58.8 (4)O4—C1D—C6D—C7D6.3 (4)
C1B—C6B—C7B—C2C117.3 (3)C2D—C1D—C6D—C7D171.7 (2)
C1B—O2—C8B—C9B158.3 (3)C4D—C5D—C6D—C1D1.4 (5)
O2—C8B—C9B—C9Ai135.4 (4)C4D—C5D—C6D—C7D175.3 (3)
C8C—O3—C1C—C2C102.8 (4)C3A—C2A—C7D—C6D99.0 (4)
C8C—O3—C1C—C6C80.5 (4)C1A—C2A—C7D—C6D75.0 (4)
O3—C1C—C2C—C3C179.7 (3)C1D—C6D—C7D—C2A120.3 (3)
C6C—C1C—C2C—C3C3.6 (6)C5D—C6D—C7D—C2A56.3 (4)
O3—C1C—C2C—C7B2.5 (5)C1D—O4—C8D—C9D172.7 (6)
C6C—C1C—C2C—C7B174.1 (3)O4—C8D—C9D—C10D136.3 (13)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC74H68O8
Mr1085.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)29.075 (3), 12.1376 (11), 16.9475 (7)
β (°) 94.992 (5)
V3)5958.1 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.52 × 0.37 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.836, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10606, 5644, 3637
Rint0.036
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.261, 1.15
No. of reflections5644
No. of parameters366
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. STH wishes to acknowledge the Howard University Graduate School for a Teaching Assistantship.

References

First citationAndreetti, G. D., Pochini, A. & Ungaro, R. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 1773–1779.  CrossRef Google Scholar
First citationArduini, A., Fanni, S., Manfredi, G., Pochini, A., Ungaro, R., Sicuri, A. R. & Ugozzoli, F. (1995). J. Org. Chem. 60, 1448–1453.  CSD CrossRef CAS Web of Science Google Scholar
First citationArduini, A., McGregor, W. M., Paganuzzi, D., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996a). J. Chem. Soc. Perkin Trans. 2, pp. 839–846.  CrossRef Google Scholar
First citationArduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996b). J. Org. Chem. 61, 6881–6887.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationAsfari, Z., Böhmer, V., Harrowfield, J. & Vicens, J. (2001). In Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationDrew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472–474.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddard. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationHo, Z., Ku, M., Shu, C. & Lin, L. (1996). Tetrahedron, 52, 13189–13200.  CrossRef CAS Web of Science Google Scholar
First citationJaime, C., de Mendoza, J., Prados, P., Nieto, P. M. & Sánchez, C. (1991). J. Org. Chem. 56, 3372–3376.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746–1787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXu, W., Puddephatt, R. J., Manojlovic-Muir, L., Muir, K. W. & Frampton, C. S. (1994). J. Inclusion Phenom. Mol. Recognit. Chem. 19, 277–290.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, Y. & Swager, T. M. (2007). Macromolecules, 40, 7437–7440.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1833-o1834
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds