metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[6-carboxyl­ato-N′-(pyridin-2-yl­methyl­­idene)pyridine-2-carbohydrazidato]copper(II) trihydrate

aCollege of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
*Correspondence e-mail: wws@hqu.edu.cn

(Received 16 April 2012; accepted 11 May 2012; online 19 May 2012)

In the title compound, [Cu(C13H8N4O3)(H2O)]·3H2O, the complex molecule, except for the aqua ligand, is essentially planar [r.m.s. deviation = 0.034 (2) Å]. The coordination polyhedron of the Cu2+ cation is a square-pyramid, with the aqua ligand at the apex. The compound exhibits a three-dimensional structure, which is is stabilized by O—H⋯O and O—-H⋯N hydrogen bonds and ππ inter­actions [centroid–centroid distance = 2.987 (3) Å].

Related literature

For the synthesis, see: Wu et al. (2007[Wu, W. S., Wu, D. S., Cheng, W. D., Zhang, H. & Dai, J. C. (2007). Cryst. Growth Des. 7, 2316-2323.]). For a related structure, see: Cheng et al. (2007[Cheng, C.-X., Liu, H.-W., Luo, F.-H., Cao, M.-N. & Hu, Z.-Q. (2007). Acta Cryst. E63, o2899.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H8N4O3)(H2O)]·3H2O

  • Mr = 403.85

  • Triclinic, [P \overline 1]

  • a = 7.1646 (16) Å

  • b = 9.369 (2) Å

  • c = 12.647 (3) Å

  • α = 75.313 (4)°

  • β = 78.864 (4)°

  • γ = 74.155 (4)°

  • V = 783.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 173 K

  • 0.46 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS.. University of Göttingen, Germany.]) Tmin = 0.655, Tmax = 0.749

  • 4689 measured reflections

  • 3903 independent reflections

  • 3270 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.097

  • S = 1.09

  • 3903 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O1i 0.70 (3) 2.04 (3) 2.718 (2) 165 (3)
O7—H7B⋯O6ii 0.72 (3) 2.09 (3) 2.796 (3) 167 (3)
O6—H6A⋯O3iii 0.74 (3) 1.94 (3) 2.675 (3) 176 (3)
O5—H5B⋯O4 0.72 (3) 2.07 (3) 2.788 (3) 173 (3)
O4—H4A⋯N3iv 0.70 (4) 2.20 (4) 2.878 (2) 163 (3)
O4—H4A⋯O1iv 0.70 (4) 2.56 (3) 3.053 (2) 129 (3)
O5—H5A⋯O7 0.65 (3) 2.10 (4) 2.742 (3) 168 (4)
O7—H7A⋯O6v 0.86 (4) 1.95 (4) 2.803 (3) 175 (3)
O6—H6B⋯O5 0.78 (4) 1.94 (4) 2.718 (3) 178 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) -x, -y+1, -z+1; (v) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, [(C13H8N4O3)(H2O)Cu].3H2O (I), the Cu(II) ion is 5-coordinated by two nitrogen from two pyridine rings of the same molecule, one nitrogen from the hydrazine, one carboxyl oxygen, and an oxygen atom from H2O. They form a rectangular pyramid. N1, N2, N4, O2 from the bottom side (Rms=0.0039 (7) Å), The distances of Cu and O4 to the plane are 0.1446 (8)Å and 2.477 (2)Å. The Cu—O bond lengths Cu—O2 and Cu—O4 are 2.008 (2) Å and 2.338 (2) Å , the bond lengths of two pyridine ring nitrogens with Cu are 1.940 (2) Å and 1.932 (2) Å, which are a little shorter then the normal value(1.99 Å). The distance of Cu—N2 is 1.942 (2) Å. The structure of the title compound shown in Fig 1. Except for the H2O molecules and the Cu atom , the complex molecule is essentially planar, the r.m.s. deviation from planarity being 0.034 (2) Å. It exhibits a three-dimensional structure which is stabilized by hydrogen bonds, van der Waals forces and ππ interactions [the distance between the layers is 0.987 (3) Å]. The O—H···N, O—H···O hydrogen bonds are detailed in Fig 2 and Table 1.

Related literature top

For the synthesis, see: Wu et al. (2007). For a related structure, see: Cheng et al. (2007).

Experimental top

Concentrated H2SO4 (2 mL)was added slowly with stirring to a solution of pyridine-2,6-dicarboxylic acid in ethanol. The solution was left to reflux for 24 h, yielding a white precipitate of ethylpyridine-2,6-dicarboxylate. This was dissolved in ethanol, then the hydrazine hydrate was slowly added with continuous stirring and the mixture was refluxed over a period of 6 h, yielding awhite crystalline solid of pyridine-2-carbohydrazide-6-carboxyl acid.

The synthesis of N2-(pyridin-2-ylmethylidene)-pyridine-2-carbohydrazide methylformamide -6-carboxylic acid was carried out in accord with the method of Cheng et al. , (2007). To a suspension of pyridine-2-carbohydrazide-6-carboxyl acid (5.43 g, 30 mmol) in absolute ethanol(50 ml), a solution of pyridine-2-aldehyde (6.43 g, 60 mmol) in the same solvent(20 ml) was added at 353 K. The mixture was left to react at refluxing for 8 h. The yellowish product was filtered, washed with hot ethanol(20 ml) three times and dried in vacuo.

The title compound (I) was synthesized according to the method of Wu et al., (2004). The N2-(pyridin-2-ylmethylidene)-pyridine-2-carbohydrazide methylformamide -6-carboxylic acid (0.03 g,0.1 mmol) dissolved in DMF(10 ml), then CuBr2(0.02 g, 0.1 mmol) in DMF(10 ml) was added slowly. Black crystals of the title complex precipitated after a few weeks of slow evaporation of the DMF solution at room temperature. Elemental analysis: caculated for C13H10CuN4O4.3H2O:C 38.61%, H 3.96%, N 13.86% ; found: C 38.70%, H 3.83%, N 13.95%. Mp: 645 K.

Refinement top

The position of the water H atoms were located in a difference Fourier map and were refined freely. Uiso of H4A, H4B, H6A atom = 0.03Ueq(C), Uiso of H5A, H5B, H7B atom = 0.03Ueq(C), and Uiso of H6B, H7A atom = 0.06Ueq(C). All the C-bound H atoms were included in the riding model approximation with C—H = 0.93 Å. The Uiso of each H atom = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure (at 30% probability) of the title compound.
[Figure 2] Fig. 2. Packing diagram of the title complex, showing hydrogen bonds as dashed lines.
Aqua[6-carboxylato-N'-(pyridin-2-ylmethylidene)pyridine-2- carbohydrazidato]copper(II) trihydrate top
Crystal data top
[Cu(C13H8N4O3)(H2O)]·3H2OZ = 2
Mr = 403.85F(000) = 414.0
Triclinic, P1Dx = 1.713 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1646 (16) ÅCell parameters from 4689 reflections
b = 9.369 (2) Åθ = 2.3–28.3°
c = 12.647 (3) ŵ = 1.44 mm1
α = 75.313 (4)°T = 173 K
β = 78.864 (4)°Prism, black
γ = 74.155 (4)°0.46 × 0.25 × 0.20 mm
V = 783.0 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3903 independent reflections
Radiation source: fine-focus sealed tube3270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 95
Tmin = 0.655, Tmax = 0.749k = 1211
4689 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.060P)2 + 0.2857P]
where P = (Fo2 + 2Fc2)/3
3903 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C13H8N4O3)(H2O)]·3H2Oγ = 74.155 (4)°
Mr = 403.85V = 783.0 (3) Å3
Triclinic, P1Z = 2
a = 7.1646 (16) ÅMo Kα radiation
b = 9.369 (2) ŵ = 1.44 mm1
c = 12.647 (3) ÅT = 173 K
α = 75.313 (4)°0.46 × 0.25 × 0.20 mm
β = 78.864 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3903 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3270 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.749Rint = 0.017
4689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.87 e Å3
3903 reflectionsΔρmin = 0.34 e Å3
259 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09853 (3)0.81795 (2)0.437142 (18)0.02327 (10)
N10.0413 (2)0.87989 (18)0.31321 (14)0.0236 (3)
N20.1026 (2)0.70465 (19)0.49414 (14)0.0248 (3)
N30.1258 (2)0.60892 (19)0.59384 (14)0.0262 (3)
N40.2029 (2)0.77149 (19)0.57510 (14)0.0243 (3)
O10.3452 (2)0.63031 (17)0.43908 (13)0.0302 (3)
O20.2363 (2)0.97722 (17)0.34524 (13)0.0316 (3)
O30.2579 (3)1.1266 (2)0.17829 (15)0.0430 (4)
C10.1882 (3)0.8163 (2)0.31567 (17)0.0243 (4)
C20.2883 (3)0.8560 (2)0.22629 (18)0.0293 (4)
H2B0.39030.81230.22630.035*
C30.2335 (3)0.9632 (3)0.13589 (18)0.0331 (4)
H3B0.30000.99230.07470.040*
C40.0801 (3)1.0273 (2)0.13613 (18)0.0307 (4)
H40.04291.09910.07580.037*
C50.0152 (3)0.9817 (2)0.22791 (17)0.0261 (4)
C60.2228 (3)0.7064 (2)0.42312 (16)0.0242 (4)
C70.0134 (3)0.5975 (2)0.66471 (17)0.0274 (4)
H70.03780.52990.73070.049 (8)*
C80.1460 (3)0.6693 (2)0.66302 (17)0.0263 (4)
C90.2380 (3)0.6271 (3)0.75670 (18)0.0324 (4)
H9A0.19840.55610.81680.039*
C100.3894 (3)0.6908 (3)0.7609 (2)0.0357 (5)
H10A0.45290.66200.82320.043*
C110.4442 (3)0.7971 (3)0.67170 (19)0.0325 (5)
H11A0.54330.84310.67300.039*
C120.3489 (3)0.8337 (2)0.58068 (18)0.0287 (4)
H12A0.38690.90460.52000.034*
C130.1842 (3)1.0349 (2)0.25009 (18)0.0287 (4)
O40.3293 (2)0.63057 (18)0.35862 (13)0.0264 (3)
O50.3746 (3)0.7227 (2)0.12947 (18)0.0412 (4)
O60.7331 (3)0.6617 (2)0.00850 (16)0.0414 (4)
O70.1112 (3)0.6122 (3)0.06140 (17)0.0461 (4)
H4B0.416 (5)0.615 (3)0.381 (2)0.033 (8)*
H7B0.158 (5)0.537 (4)0.052 (3)0.045 (9)*
H6A0.733 (4)0.723 (3)0.041 (3)0.033 (7)*
H5B0.371 (5)0.693 (4)0.188 (3)0.043 (9)*
H4A0.291 (5)0.566 (4)0.381 (3)0.045 (9)*
H5A0.303 (5)0.707 (4)0.113 (3)0.044 (10)*
H7A0.003 (6)0.632 (4)0.042 (3)0.061 (10)*
H6B0.632 (5)0.680 (4)0.044 (3)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02030 (15)0.02569 (15)0.02592 (15)0.00806 (10)0.00475 (9)0.00513 (10)
N10.0186 (7)0.0252 (8)0.0273 (8)0.0051 (6)0.0031 (6)0.0063 (6)
N20.0209 (8)0.0282 (8)0.0262 (8)0.0069 (6)0.0017 (6)0.0071 (6)
N30.0225 (8)0.0269 (8)0.0289 (8)0.0070 (6)0.0001 (6)0.0067 (6)
N40.0208 (8)0.0287 (8)0.0266 (8)0.0066 (6)0.0026 (6)0.0109 (6)
O10.0236 (7)0.0330 (7)0.0377 (8)0.0116 (6)0.0048 (6)0.0083 (6)
O20.0299 (8)0.0300 (7)0.0377 (8)0.0133 (6)0.0068 (6)0.0039 (6)
O30.0413 (9)0.0402 (9)0.0452 (10)0.0197 (8)0.0075 (8)0.0071 (7)
C10.0200 (9)0.0239 (9)0.0292 (9)0.0023 (7)0.0033 (7)0.0088 (7)
C20.0251 (10)0.0328 (10)0.0336 (10)0.0056 (8)0.0074 (8)0.0123 (8)
C30.0342 (11)0.0352 (11)0.0297 (10)0.0021 (9)0.0108 (8)0.0083 (8)
C40.0317 (10)0.0303 (10)0.0274 (9)0.0041 (8)0.0022 (8)0.0058 (8)
C50.0243 (9)0.0220 (9)0.0303 (9)0.0035 (7)0.0018 (7)0.0062 (7)
C60.0187 (8)0.0250 (9)0.0290 (9)0.0039 (7)0.0005 (7)0.0093 (7)
C70.0278 (10)0.0276 (9)0.0260 (9)0.0082 (8)0.0006 (7)0.0044 (7)
C80.0240 (9)0.0270 (9)0.0286 (9)0.0033 (7)0.0029 (7)0.0108 (7)
C90.0335 (11)0.0349 (11)0.0286 (10)0.0062 (9)0.0065 (8)0.0067 (8)
C100.0309 (11)0.0435 (12)0.0375 (11)0.0035 (9)0.0125 (9)0.0167 (10)
C110.0236 (10)0.0387 (11)0.0405 (12)0.0045 (8)0.0061 (8)0.0197 (9)
C120.0229 (9)0.0324 (10)0.0346 (10)0.0076 (8)0.0026 (8)0.0138 (8)
C130.0240 (9)0.0249 (9)0.0368 (11)0.0071 (7)0.0034 (8)0.0048 (8)
O40.0221 (7)0.0270 (8)0.0315 (7)0.0078 (6)0.0043 (6)0.0059 (6)
O50.0384 (10)0.0548 (11)0.0350 (10)0.0198 (8)0.0031 (8)0.0091 (8)
O60.0392 (10)0.0409 (10)0.0341 (9)0.0032 (8)0.0033 (8)0.0018 (8)
O70.0441 (11)0.0474 (11)0.0530 (11)0.0105 (9)0.0160 (9)0.0150 (9)
Geometric parameters (Å, º) top
Cu1—N11.9042 (17)C4—C51.375 (3)
Cu1—N41.9325 (17)C4—H40.9300
Cu1—N21.9415 (17)C5—C131.525 (3)
Cu1—O22.0084 (15)C7—C81.470 (3)
Cu1—O42.3379 (15)C7—H70.9300
N1—C51.326 (3)C8—C91.384 (3)
N1—C11.336 (2)C9—C101.388 (3)
N2—C61.353 (3)C9—H9A0.9300
N2—N31.360 (2)C10—C111.376 (4)
N3—C71.283 (3)C10—H10A0.9300
N4—C121.349 (3)C11—C121.373 (3)
N4—C81.348 (3)C11—H11A0.9300
O1—C61.232 (2)C12—H12A0.9300
O2—C131.270 (3)O4—H4B0.70 (3)
O3—C131.228 (3)O4—H4A0.70 (4)
C1—C21.373 (3)O5—H5B0.72 (3)
C1—C61.506 (3)O5—H5A0.65 (3)
C2—C31.389 (3)O6—H6A0.74 (3)
C2—H2B0.9300O6—H6B0.78 (4)
C3—C41.389 (3)O7—H7B0.72 (3)
C3—H3B0.9300O7—H7A0.86 (4)
N1—Cu1—N4170.94 (7)N1—C5—C4119.82 (19)
N1—Cu1—N280.89 (7)N1—C5—C13111.31 (18)
N4—Cu1—N295.11 (7)C4—C5—C13128.86 (19)
N1—Cu1—O280.84 (7)O1—C6—N2127.17 (19)
N4—Cu1—O2101.87 (7)O1—C6—C1121.94 (18)
N2—Cu1—O2160.31 (7)N2—C6—C1110.88 (16)
N1—Cu1—O491.72 (6)N3—C7—C8133.21 (19)
N4—Cu1—O496.87 (6)N3—C7—H7113.4
N2—Cu1—O497.22 (7)C8—C7—H7113.4
O2—Cu1—O490.63 (6)N4—C8—C9120.50 (19)
C5—N1—C1123.44 (18)N4—C8—C7122.52 (18)
C5—N1—Cu1118.13 (14)C9—C8—C7116.98 (19)
C1—N1—Cu1118.41 (14)C8—C9—C10120.0 (2)
C6—N2—N3114.57 (16)C8—C9—H9A120.0
C6—N2—Cu1117.02 (13)C10—C9—H9A120.0
N3—N2—Cu1127.98 (13)C11—C10—C9119.1 (2)
C7—N3—N2118.37 (17)C11—C10—H10A120.4
C12—N4—C8118.86 (18)C9—C10—H10A120.4
C12—N4—Cu1118.88 (14)C12—C11—C10118.3 (2)
C8—N4—Cu1122.02 (14)C12—C11—H11A120.8
C13—O2—Cu1114.80 (13)C10—C11—H11A120.8
N1—C1—C2119.63 (19)N4—C12—C11123.1 (2)
N1—C1—C6112.24 (17)N4—C12—H12A118.4
C2—C1—C6128.12 (19)C11—C12—H12A118.4
C1—C2—C3118.32 (19)O3—C13—O2125.5 (2)
C1—C2—H2B120.8O3—C13—C5119.8 (2)
C3—C2—H2B120.8O2—C13—C5114.64 (18)
C2—C3—C4120.6 (2)Cu1—O4—H4B108 (2)
C2—C3—H3B119.7Cu1—O4—H4A103 (3)
C4—C3—H3B119.7H4B—O4—H4A106 (3)
C5—C4—C3118.2 (2)H5B—O5—H5A108 (4)
C5—C4—H4120.9H6A—O6—H6B107 (3)
C3—C4—H4120.9H7B—O7—H7A105 (3)
N4—Cu1—N1—C5112.0 (4)C1—C2—C3—C40.4 (3)
N2—Cu1—N1—C5176.41 (15)C2—C3—C4—C50.0 (3)
O2—Cu1—N1—C53.82 (14)C1—N1—C5—C40.4 (3)
O4—Cu1—N1—C586.55 (15)Cu1—N1—C5—C4178.88 (15)
N4—Cu1—N1—C169.4 (4)C1—N1—C5—C13179.22 (17)
N2—Cu1—N1—C15.02 (14)Cu1—N1—C5—C132.3 (2)
O2—Cu1—N1—C1177.62 (15)C3—C4—C5—N10.5 (3)
O4—Cu1—N1—C192.02 (15)C3—C4—C5—C13179.05 (19)
N1—Cu1—N2—C67.05 (14)N3—N2—C6—O11.1 (3)
N4—Cu1—N2—C6178.85 (14)Cu1—N2—C6—O1171.93 (16)
O2—Cu1—N2—C629.2 (3)N3—N2—C6—C1179.46 (15)
O4—Cu1—N2—C683.54 (14)Cu1—N2—C6—C17.5 (2)
N1—Cu1—N2—N3179.04 (16)N1—C1—C6—O1176.13 (17)
N4—Cu1—N2—N39.16 (16)C2—C1—C6—O14.7 (3)
O2—Cu1—N2—N3158.79 (17)N1—C1—C6—N23.3 (2)
O4—Cu1—N2—N388.45 (16)C2—C1—C6—N2175.89 (18)
C6—N2—N3—C7178.04 (17)N2—N3—C7—C80.1 (3)
Cu1—N2—N3—C75.9 (3)C12—N4—C8—C91.0 (3)
N1—Cu1—N4—C12113.4 (4)Cu1—N4—C8—C9173.31 (15)
N2—Cu1—N4—C12176.78 (15)C12—N4—C8—C7179.16 (18)
O2—Cu1—N4—C126.80 (16)Cu1—N4—C8—C76.5 (3)
O4—Cu1—N4—C1285.30 (15)N3—C7—C8—N40.5 (4)
N1—Cu1—N4—C872.3 (4)N3—C7—C8—C9179.4 (2)
N2—Cu1—N4—C88.91 (16)N4—C8—C9—C100.4 (3)
O2—Cu1—N4—C8178.88 (15)C7—C8—C9—C10179.80 (19)
O4—Cu1—N4—C889.02 (15)C8—C9—C10—C110.9 (3)
N1—Cu1—O2—C134.88 (15)C9—C10—C11—C121.4 (3)
N4—Cu1—O2—C13176.09 (14)C8—N4—C12—C110.5 (3)
N2—Cu1—O2—C1327.1 (3)Cu1—N4—C12—C11174.03 (15)
O4—Cu1—O2—C1386.76 (15)C10—C11—C12—N40.7 (3)
C5—N1—C1—C20.1 (3)Cu1—O2—C13—O3175.11 (19)
Cu1—N1—C1—C2178.37 (14)Cu1—O2—C13—C54.9 (2)
C5—N1—C1—C6179.18 (17)N1—C5—C13—O3178.1 (2)
Cu1—N1—C1—C62.3 (2)C4—C5—C13—O33.2 (3)
N1—C1—C2—C30.5 (3)N1—C5—C13—O21.9 (3)
C6—C1—C2—C3178.64 (18)C4—C5—C13—O2176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1i0.70 (3)2.04 (3)2.718 (2)165 (3)
O7—H7B···O6ii0.72 (3)2.09 (3)2.796 (3)167 (3)
O6—H6A···O3iii0.74 (3)1.94 (3)2.675 (3)176 (3)
O5—H5B···O40.72 (3)2.07 (3)2.788 (3)173 (3)
O4—H4A···N3iv0.70 (4)2.20 (4)2.878 (2)163 (3)
O4—H4A···O1iv0.70 (4)2.56 (3)3.053 (2)129 (3)
O5—H5A···O70.65 (3)2.10 (4)2.742 (3)168 (4)
O7—H7A···O6v0.86 (4)1.95 (4)2.803 (3)175 (3)
O6—H6B···O50.78 (4)1.94 (4)2.718 (3)178 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z; (iv) x, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C13H8N4O3)(H2O)]·3H2O
Mr403.85
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.1646 (16), 9.369 (2), 12.647 (3)
α, β, γ (°)75.313 (4), 78.864 (4), 74.155 (4)
V3)783.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.46 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.655, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
4689, 3903, 3270
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.097, 1.09
No. of reflections3903
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1i0.70 (3)2.04 (3)2.718 (2)165 (3)
O7—H7B···O6ii0.72 (3)2.09 (3)2.796 (3)167 (3)
O6—H6A···O3iii0.74 (3)1.94 (3)2.675 (3)176 (3)
O5—H5B···O40.72 (3)2.07 (3)2.788 (3)173 (3)
O4—H4A···N3iv0.70 (4)2.20 (4)2.878 (2)163 (3)
O4—H4A···O1iv0.70 (4)2.56 (3)3.053 (2)129 (3)
O5—H5A···O70.65 (3)2.10 (4)2.742 (3)168 (4)
O7—H7A···O6v0.86 (4)1.95 (4)2.803 (3)175 (3)
O6—H6B···O50.78 (4)1.94 (4)2.718 (3)178 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z; (iv) x, y+1, z+1; (v) x1, y, z.
 

Acknowledgements

We are grateful for financial support from the National Science Foundation of Fujian Province of China (No. 2010J01288) and the Fundamental Research Funds for the Central Universities (No. JB-JC1003). We also thank Dr Zhan-bin Wei (Department of Chemistry, Xiamen University) for the data collection.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C.-X., Liu, H.-W., Luo, F.-H., Cao, M.-N. & Hu, Z.-Q. (2007). Acta Cryst. E63, o2899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS.. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W. S., Wu, D. S., Cheng, W. D., Zhang, H. & Dai, J. C. (2007). Cryst. Growth Des. 7, 2316–2323.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds