organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1793-o1794

1-Methyl-3,3-bis­­(phenyl­sulfan­yl)piperidin-2-one

aBioMat – Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bChemistry Institute, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: ignez@ufscar.br

(Received 26 April 2012; accepted 10 May 2012; online 19 May 2012)

The piperidone ring in the title compound, C18H19NOS2, is in a distorted half-chair conformation, distorted towards a twisted boat, with the central methyl­ene C atom of the propyl backbone lying 0.606 (2) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.1197 Å). One of the S-bound phenyl rings is almost perpendicular to the least-squares plane through the piperidone ring, whereas the other is splayed [dihedral angles = 75.97 (6) and 44.21 (7)°, respectively]. The most prominent feature of the crystal packing is the formation of helical supra­molecular chains along the b axis sustained by C—H⋯O inter­actions. The chains are consolidated into a three-dimensional architecture via C—H⋯π inter­actions whereby one S-bound phenyl ring accepts two C—H⋯π contacts.

Related literature

For background to β-thio-carbonyl compounds, see: Vinhato et al. (2011[Vinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97-106.]); Olivato et al. (2009[Olivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393-400.]). For related structures, see: Zukerman-Schpector et al. (2010[Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.], 2011[Zukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Santos, J. M. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2759.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NOS2

  • Mr = 329.48

  • Orthorhombic, P 21 21 21

  • a = 8.2103 (1) Å

  • b = 9.8329 (1) Å

  • c = 20.3686 (2) Å

  • V = 1644.38 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.93 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual (Cu at zero) diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.427, Tmax = 0.585

  • 4452 measured reflections

  • 2769 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.09

  • 2769 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 818 Friedel pairs

  • Flack parameter: 0.024 (14)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.95 2.32 3.237 (3) 163
C6—H6b⋯Cg1ii 0.98 2.95 3.606 (2) 125
C14—H14⋯Cg1iii 0.95 2.96 3.544 (2) 121
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (ChemAxon, 2009[ChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our on-going research on the conformational behaviour and electronic interactions in β-thio-carbonyl and β-bis-thio-carbonyl compounds, e.g. N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides and 3,3-bis[(4'- substituted) phenylthio]-1-methyl-2-piperidones, using spectroscopic, theoretical and X-ray diffraction methods (Olivato et al., 2009; Zukerman-Schpector et al. 2010, 2011, Vinhato et al., 2011), the title compound, (I), was synthesized and its crystal structure determined.

In (I), Fig. 1, the piperidone ring is in a distorted half-chair conformation with the C4 atom lying 0.606 (2) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.1197 Å). The ring puckering parameters are: q2 = 0.4368 (19) Å, q3 = 0.2886 (18) Å, QT = 0.5235 (18) Å, ϕ2 = 216.7 (2) ° (Cremer & Pople, 1975). The S2-bound phenyl ring is almost perpendicular to the plane through the piperidone ring [dihedral angle = 75.97 (6) °] whereas the S1-bond phenyl ring makes dihedral angles of 44.21 (7) and 59.92 (6) ° with those through the piperidone and S2-bound phenyl rings, respectively.

The crystal packing of (I) is sustained by C—H···O and C—H···π interactions, Table 1. The C—H···O interactions lead to the formation of an helical supramolecular chain along the b axis, Fig. 2. These chains are consolidated into a three-dimensional architecture via C—H···π interactions with the S1-benzene accepting two C—H···π contacts, Fig. 3.

Related literature top

For background to β-thio-carbonyl compounds, see: Vinhato et al. (2011); Olivato et al. (2009). For related structures, see: Zukerman-Schpector et al. (2010, 2011). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Zoretic & Soja (1976).

Experimental top

Firstly, 1-methyl-2-piperidinone (2.3 g, 20 mmol) was added drop-wise to a cooled (195 K) solution of hexamethylphosphoramide (HMPA) (3.6 ml, 20 mmol), diisopropylamine (2.8 ml, 20 mmol) and butyllithium (13.2 ml, 1,52 mol.L-1 hexane solution) in THF (60 ml). After 20 minutes, diphenyl disulfide (4.4 g, 20 mmol) dissolved in THF (20 ml) was added dropwise to the enolate solution (Zoretic & Soja, 1976). The solution was stirred for 4 h at 195 K, then water (100 ml) was added at room temperature and extraction with dichloromethane was performed. The organic layer was dried over anhydrous sodium sulfate. After evaporation of the solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (1.4 g, yield = 21%). Suitable crystals for X-ray analysis were obtained by vapour diffusion of n-hexane into a chloroform solution of (I) held at 283 K; m.p. 405–406 K. IR (cm-1): ν(C=O) 1663. NMR (CDCl3, p.p.m.): δ 1.87–1.91 (2H, multiplet), 1.96–1.99 (2H, multiplet), 2.92 (3H, singlet), 3.14–3.17 (2H, triplet, J = 6.1 Hz), 7.32–7.37 (4H, multiplet, Aryl-H), 7.38–7.40 (2H, multiplet, Aryl-H), 7.63–7.65 (4H, multiplet, Aryl-H). Analysis found: C 65.49, H 5.91, N 4.17%. C18H19ONS2 requires: C 65.62, H 5.81, N 4.25%.

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by C—H···O interactions, shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
1-Methyl-3,3-bis(phenylsulfanyl)piperidin-2-one top
Crystal data top
C18H19NOS2F(000) = 696
Mr = 329.48Dx = 1.331 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 3533 reflections
a = 8.2103 (1) Åθ = 4.5–75.9°
b = 9.8329 (1) ŵ = 2.93 mm1
c = 20.3686 (2) ÅT = 100 K
V = 1644.38 (3) Å3Prism, colourless
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Agilent SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
2769 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.4041 pixels mm-1θmax = 76.2°, θmin = 5.0°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1112
Tmin = 0.427, Tmax = 0.585l = 2524
4452 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.3751P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2769 reflectionsΔρmax = 0.19 e Å3
200 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 818 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (14)
Crystal data top
C18H19NOS2V = 1644.38 (3) Å3
Mr = 329.48Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.2103 (1) ŵ = 2.93 mm1
b = 9.8329 (1) ÅT = 100 K
c = 20.3686 (2) Å0.35 × 0.30 × 0.25 mm
Data collection top
Agilent SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
2769 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2728 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.585Rint = 0.016
4452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.19 e Å3
S = 1.09Δρmin = 0.32 e Å3
2769 reflectionsAbsolute structure: Flack (1983), 818 Friedel pairs
200 parametersAbsolute structure parameter: 0.024 (14)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30204 (5)1.02555 (4)0.75801 (2)0.01619 (10)
S20.35543 (5)0.81897 (4)0.65673 (2)0.01664 (10)
N10.07129 (19)0.98484 (16)0.66379 (7)0.0177 (3)
O10.15902 (17)1.07356 (13)0.62189 (6)0.0212 (3)
C10.0918 (2)0.99466 (17)0.66038 (8)0.0152 (3)
C20.1941 (2)0.90147 (17)0.70511 (8)0.0134 (3)
C30.0940 (2)0.79738 (17)0.74265 (8)0.0146 (3)
H3A0.06520.72100.71320.018*
H3B0.15930.76060.77940.018*
C40.0604 (2)0.86200 (18)0.76924 (9)0.0180 (4)
H4A0.12050.79550.79650.022*
H4B0.03250.94120.79700.022*
C50.1651 (2)0.9070 (2)0.71229 (9)0.0216 (4)
H5A0.21300.82600.69080.026*
H5B0.25570.96390.72890.026*
C60.1655 (3)1.0590 (2)0.61425 (9)0.0253 (4)
H6A0.13071.03060.57030.038*
H6B0.14701.15690.61940.038*
H6C0.28161.03920.61990.038*
C70.3549 (2)0.93152 (17)0.82931 (8)0.0142 (3)
C80.2861 (2)0.96954 (18)0.88918 (8)0.0188 (3)
H80.20521.03850.89060.023*
C90.3364 (3)0.90622 (19)0.94685 (8)0.0216 (4)
H90.29060.93280.98770.026*
C100.4531 (2)0.80460 (19)0.94479 (9)0.0203 (4)
H100.48800.76260.98440.024*
C110.5195 (2)0.76355 (18)0.88520 (9)0.0197 (4)
H110.59750.69230.88390.024*
C120.4711 (2)0.82740 (18)0.82761 (8)0.0159 (3)
H120.51700.80030.78680.019*
C130.2397 (2)0.71592 (18)0.60188 (8)0.0152 (3)
C140.2444 (2)0.57523 (19)0.60717 (8)0.0184 (4)
H140.30470.53380.64160.022*
C150.1608 (2)0.49458 (19)0.56209 (9)0.0220 (4)
H150.16530.39830.56550.026*
C160.0713 (2)0.5546 (2)0.51225 (9)0.0221 (4)
H160.01310.49980.48180.027*
C170.0671 (3)0.6953 (2)0.50700 (9)0.0261 (4)
H170.00590.73660.47280.031*
C180.1512 (3)0.77555 (19)0.55114 (8)0.0224 (4)
H180.14860.87170.54690.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0193 (2)0.01418 (17)0.01510 (18)0.00298 (17)0.00493 (16)0.00065 (14)
S20.01155 (18)0.0246 (2)0.01375 (18)0.00025 (17)0.00070 (15)0.00305 (16)
N10.0151 (7)0.0212 (7)0.0167 (6)0.0036 (6)0.0037 (6)0.0015 (6)
O10.0241 (7)0.0212 (6)0.0182 (6)0.0059 (6)0.0033 (5)0.0061 (5)
C10.0182 (8)0.0152 (8)0.0122 (7)0.0006 (7)0.0022 (6)0.0011 (7)
C20.0126 (7)0.0160 (7)0.0116 (7)0.0014 (7)0.0022 (6)0.0003 (6)
C30.0162 (8)0.0145 (7)0.0132 (7)0.0018 (7)0.0004 (6)0.0001 (7)
C40.0171 (9)0.0199 (8)0.0171 (8)0.0015 (7)0.0029 (7)0.0002 (7)
C50.0135 (8)0.0262 (9)0.0252 (9)0.0001 (8)0.0015 (8)0.0002 (7)
C60.0243 (10)0.0303 (9)0.0213 (8)0.0088 (9)0.0098 (8)0.0003 (8)
C70.0127 (7)0.0163 (7)0.0135 (7)0.0029 (7)0.0037 (7)0.0017 (6)
C80.0199 (9)0.0186 (8)0.0180 (8)0.0014 (8)0.0014 (7)0.0038 (7)
C90.0284 (10)0.0242 (9)0.0123 (7)0.0039 (8)0.0003 (7)0.0025 (7)
C100.0236 (9)0.0200 (8)0.0173 (8)0.0066 (8)0.0079 (7)0.0022 (7)
C110.0151 (8)0.0170 (8)0.0270 (9)0.0019 (7)0.0062 (8)0.0011 (7)
C120.0123 (8)0.0183 (8)0.0172 (8)0.0015 (7)0.0000 (6)0.0031 (7)
C130.0117 (8)0.0229 (8)0.0109 (7)0.0010 (7)0.0006 (6)0.0026 (6)
C140.0164 (8)0.0235 (8)0.0154 (7)0.0058 (8)0.0007 (7)0.0013 (7)
C150.0226 (9)0.0221 (9)0.0213 (8)0.0008 (8)0.0015 (8)0.0053 (7)
C160.0176 (8)0.0317 (10)0.0170 (8)0.0014 (8)0.0006 (7)0.0088 (7)
C170.0266 (10)0.0351 (10)0.0167 (8)0.0049 (9)0.0100 (8)0.0018 (8)
C180.0293 (10)0.0223 (8)0.0157 (8)0.0014 (8)0.0045 (8)0.0006 (7)
Geometric parameters (Å, º) top
S1—C71.7755 (17)C7—C121.400 (3)
S1—C21.8535 (17)C8—C91.392 (2)
S2—C131.7826 (17)C8—H80.9500
S2—C21.8396 (18)C9—C101.385 (3)
N1—C11.344 (2)C9—H90.9500
N1—C61.466 (2)C10—C111.390 (3)
N1—C51.468 (2)C10—H100.9500
O1—C11.233 (2)C11—C121.389 (2)
C1—C21.541 (2)C11—H110.9500
C2—C31.519 (2)C12—H120.9500
C3—C41.518 (2)C13—C141.388 (3)
C3—H3A0.9900C13—C181.393 (2)
C3—H3B0.9900C14—C151.394 (3)
C4—C51.511 (3)C14—H140.9500
C4—H4A0.9900C15—C161.385 (3)
C4—H4B0.9900C15—H150.9500
C5—H5A0.9900C16—C171.388 (3)
C5—H5B0.9900C16—H160.9500
C6—H6A0.9800C17—C181.381 (3)
C6—H6B0.9800C17—H170.9500
C6—H6C0.9800C18—H180.9500
C7—C81.395 (2)
C7—S1—C2104.46 (7)H6B—C6—H6C109.5
C13—S2—C2101.69 (8)C8—C7—C12119.57 (16)
C1—N1—C6117.01 (16)C8—C7—S1118.46 (13)
C1—N1—C5126.51 (15)C12—C7—S1121.82 (13)
C6—N1—C5116.48 (15)C9—C8—C7119.86 (17)
O1—C1—N1121.59 (16)C9—C8—H8120.1
O1—C1—C2120.39 (16)C7—C8—H8120.1
N1—C1—C2118.00 (15)C10—C9—C8120.14 (17)
C3—C2—C1113.80 (14)C10—C9—H9119.9
C3—C2—S2111.23 (11)C8—C9—H9119.9
C1—C2—S2109.75 (11)C9—C10—C11120.47 (17)
C3—C2—S1114.18 (11)C9—C10—H10119.8
C1—C2—S1102.29 (11)C11—C10—H10119.8
S2—C2—S1104.91 (9)C12—C11—C10119.60 (17)
C4—C3—C2110.44 (14)C12—C11—H11120.2
C4—C3—H3A109.6C10—C11—H11120.2
C2—C3—H3A109.6C11—C12—C7120.32 (16)
C4—C3—H3B109.6C11—C12—H12119.8
C2—C3—H3B109.6C7—C12—H12119.8
H3A—C3—H3B108.1C14—C13—C18119.44 (16)
C5—C4—C3108.91 (14)C14—C13—S2120.21 (14)
C5—C4—H4A109.9C18—C13—S2120.25 (14)
C3—C4—H4A109.9C13—C14—C15120.15 (17)
C5—C4—H4B109.9C13—C14—H14119.9
C3—C4—H4B109.9C15—C14—H14119.9
H4A—C4—H4B108.3C16—C15—C14120.10 (18)
N1—C5—C4111.75 (15)C16—C15—H15120.0
N1—C5—H5A109.3C14—C15—H15120.0
C4—C5—H5A109.3C15—C16—C17119.63 (18)
N1—C5—H5B109.3C15—C16—H16120.2
C4—C5—H5B109.3C17—C16—H16120.2
H5A—C5—H5B107.9C18—C17—C16120.46 (19)
N1—C6—H6A109.5C18—C17—H17119.8
N1—C6—H6B109.5C16—C17—H17119.8
H6A—C6—H6B109.5C17—C18—C13120.21 (18)
N1—C6—H6C109.5C17—C18—H18119.9
H6A—C6—H6C109.5C13—C18—H18119.9
C6—N1—C1—O17.5 (3)C3—C4—C5—N148.7 (2)
C5—N1—C1—O1172.54 (16)C2—S1—C7—C8115.91 (15)
C6—N1—C1—C2171.12 (14)C2—S1—C7—C1268.49 (16)
C5—N1—C1—C28.9 (3)C12—C7—C8—C91.6 (3)
O1—C1—C2—C3172.11 (15)S1—C7—C8—C9174.07 (15)
N1—C1—C2—C36.5 (2)C7—C8—C9—C100.7 (3)
O1—C1—C2—S246.74 (18)C8—C9—C10—C110.9 (3)
N1—C1—C2—S2131.88 (15)C9—C10—C11—C121.6 (3)
O1—C1—C2—S164.23 (17)C10—C11—C12—C70.6 (3)
N1—C1—C2—S1117.15 (15)C8—C7—C12—C111.0 (3)
C13—S2—C2—C361.95 (12)S1—C7—C12—C11174.61 (13)
C13—S2—C2—C164.87 (12)C2—S2—C13—C14111.92 (15)
C13—S2—C2—S1174.12 (8)C2—S2—C13—C1871.68 (16)
C7—S1—C2—C333.97 (14)C18—C13—C14—C150.1 (3)
C7—S1—C2—C1157.38 (11)S2—C13—C14—C15176.56 (14)
C7—S1—C2—S288.05 (9)C13—C14—C15—C160.7 (3)
C1—C2—C3—C442.33 (18)C14—C15—C16—C170.8 (3)
S2—C2—C3—C4166.90 (11)C15—C16—C17—C180.1 (3)
S1—C2—C3—C474.61 (16)C16—C17—C18—C130.7 (3)
C2—C3—C4—C563.97 (18)C14—C13—C18—C170.8 (3)
C1—N1—C5—C413.1 (3)S2—C13—C18—C17177.28 (16)
C6—N1—C5—C4166.90 (15)
Hydrogen-bond geometry (Å, º) top
Please define Cg1
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.323.237 (3)163
C6—H6b···Cg1ii0.982.953.606 (2)125
C14—H14···Cg1iii0.952.963.544 (2)121
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H19NOS2
Mr329.48
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.2103 (1), 9.8329 (1), 20.3686 (2)
V3)1644.38 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.93
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.427, 0.585
No. of measured, independent and
observed [I > 2σ(I)] reflections
4452, 2769, 2728
Rint0.016
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.09
No. of reflections2769
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.32
Absolute structureFlack (1983), 818 Friedel pairs
Absolute structure parameter0.024 (14)

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Please define Cg1
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.323.237 (3)163
C6—H6b···Cg1ii0.982.953.606 (2)125
C14—H14···Cg1iii0.952.963.544 (2)121
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Brazilian agencies FAPESP, CNPq (fellowships to IC and PRO, and scholarships for CRCJ and JMMS) and CAPES (grant No. 808/2009 to IC) for financial support. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOlivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393–400.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Santos, J. M. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2759.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1793-o1794
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds