metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Hy­dr­oxy­benzo[h]quinolin-1-ium tetra­chlorido(pyridine-2-carboxyl­ato-κ2N,O)stannate(IV) methanol monosolvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 May 2012; accepted 2 May 2012; online 5 May 2012)

The reaction of 4-(dimethyl­amino)­pyridine, picolinic acid and stannic chloride yields the title monosolvated salt, (C13H10NO)[SnCl4(C6H4NO2)]·CH3OH. The SnIV atom is N,O-chelated by the picolinate ion in a cis-SnNOCl4 octa­hedral geometry. The cation is linked to the methanol solvent mol­ecule by an O—H⋯O hydrogen bond; the solvent mol­ecule itself is a hydrogen-bond donor to the uncoordinating carboxyl­ate O atom of the anion. The cations and anions are linked by weak N—H⋯Cl inter­actions, forming a chain running along the b axis.

Related literature

For a tetra­chlorido(pyridine-2-carboxyl­ato)stannate(IV), see: Najafi et al. (2012[Najafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m744.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10NO)[SnCl4(C6H4NO2)]·CH4O

  • Mr = 610.85

  • Monoclinic, C 2/c

  • a = 31.5065 (11) Å

  • b = 8.0802 (2) Å

  • c = 20.0948 (9) Å

  • β = 115.722 (5)°

  • V = 4608.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.645, Tmax = 0.856

  • 15316 measured reflections

  • 5326 independent reflections

  • 4445 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.02

  • 5326 reflections

  • 293 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.84 (1) 1.73 (1) 2.554 (2) 170 (3)
O4—H4⋯O2 0.83 (1) 1.87 (1) 2.698 (3) 174 (3)
N2—H2⋯Cl4i 0.87 (1) 2.58 (2) 3.255 (2) 135 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous study reported 4-(dimethylamino)pyridinium tetrachlorido(pyridine-2-carboxylato)stannate, which was synthesized by the reaction of 4-(dimethylamino)pyridine, picolinic acid and stannic chloride in methanol (Najafi et al., 2012). The reaction with 10-hydroxybenzo[h]quinoline in place of 4-(dimethylamino)pyridine yielded the analogous salt, (C13H10NO)[SnCl4(C6H4NO2)] as a methanol monosolvate (Scheme I). The SnIV atom is N,O-chelated by the picolinate ion in a cis-SnNOCl4 octahedral geometry. The cation is linked to the methanol molecule by an O–H···O hydrogen bond; the solvent molecule itself is hydrogen-bond donor to the double-bond carboxyl O atom of the anion (Table 1).

Related literature top

For a tetrachlorido(pyridine-2-carboxylato)stannate, see: Najafi et al. (2012).

Experimental top

Stannic chloride pentahydrate (0.35 g, 1 mmol), picolinic acid (0.12 g, 1 mmol) and 10-hydroxybenzo[h]quinoline (0.20 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy and ammonium H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 and N–H 0.88±0.01 Å; their temperature factors were was refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C13H10NO)[SnCl4(C6H4NO2)].CH3OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
10-Hydroxybenzo[h]quinolin-1-ium tetrachlorido(pyridine-2-carboxylato-κ2N,O)stannate(IV) methanol monosolvate top
Crystal data top
(C13H10NO)[SnCl4(C6H4NO2)]·CH4OF(000) = 2416
Mr = 610.85Dx = 1.761 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6804 reflections
a = 31.5065 (11) Åθ = 2.6–27.5°
b = 8.0802 (2) ŵ = 1.60 mm1
c = 20.0948 (9) ÅT = 100 K
β = 115.722 (5)°Prism, yellow
V = 4608.8 (3) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5326 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4445 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = 2940
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1010
Tmin = 0.645, Tmax = 0.856l = 2616
15316 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0262P)2 + 2.9883P]
where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.51 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C13H10NO)[SnCl4(C6H4NO2)]·CH4OV = 4608.8 (3) Å3
Mr = 610.85Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.5065 (11) ŵ = 1.60 mm1
b = 8.0802 (2) ÅT = 100 K
c = 20.0948 (9) Å0.30 × 0.20 × 0.10 mm
β = 115.722 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5326 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4445 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.856Rint = 0.033
15316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.51 e Å3
5326 reflectionsΔρmin = 0.44 e Å3
293 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.341644 (5)0.660077 (19)0.666671 (10)0.01289 (6)
Cl10.37922 (2)0.39689 (7)0.68079 (4)0.02026 (14)
Cl20.40850 (2)0.82509 (7)0.68449 (4)0.02084 (15)
Cl30.31336 (2)0.66098 (8)0.53578 (4)0.02510 (15)
Cl40.36197 (2)0.66555 (8)0.79760 (4)0.02179 (15)
O10.27693 (5)0.5575 (2)0.65110 (10)0.0169 (4)
O20.20485 (6)0.6113 (2)0.64027 (11)0.0225 (4)
O30.07905 (6)0.2706 (2)0.53486 (11)0.0217 (4)
O40.16051 (6)0.3577 (2)0.54923 (12)0.0238 (4)
N10.29836 (7)0.8782 (2)0.66282 (12)0.0144 (4)
N20.02661 (7)0.1368 (3)0.58997 (13)0.0172 (5)
C10.24389 (8)0.6557 (3)0.64886 (14)0.0153 (5)
C20.25594 (8)0.8378 (3)0.65863 (14)0.0148 (5)
C30.22558 (9)0.9549 (3)0.66296 (15)0.0191 (6)
H3A0.19570.92380.65990.023*
C40.23938 (9)1.1189 (3)0.67188 (16)0.0215 (6)
H4A0.21921.20220.67530.026*
C50.28285 (10)1.1601 (3)0.67575 (18)0.0253 (7)
H50.29281.27230.68130.030*
C60.31165 (9)1.0370 (3)0.67148 (16)0.0209 (6)
H60.34181.06540.67480.025*
C70.02266 (9)0.0482 (3)0.64277 (15)0.0200 (6)
H70.05010.01370.68460.024*
C80.02144 (9)0.0061 (3)0.63690 (16)0.0207 (6)
H80.02460.05800.67410.025*
C90.06052 (9)0.0593 (3)0.57607 (16)0.0192 (6)
H90.09100.03150.57140.023*
C100.05622 (9)0.1538 (3)0.52073 (15)0.0173 (5)
C110.09634 (9)0.2137 (3)0.45798 (16)0.0214 (6)
H110.12710.18940.45280.026*
C120.09079 (9)0.3046 (3)0.40608 (16)0.0228 (6)
H120.11800.34400.36500.027*
C130.04506 (9)0.3436 (3)0.41098 (15)0.0191 (6)
C140.04056 (9)0.4373 (3)0.35614 (16)0.0236 (6)
H140.06800.47480.31490.028*
C150.00334 (9)0.4759 (3)0.36123 (16)0.0240 (6)
H150.00590.54000.32350.029*
C160.04405 (9)0.4220 (3)0.42113 (16)0.0208 (6)
H160.07410.44950.42400.025*
C170.04076 (9)0.3285 (3)0.47630 (15)0.0172 (5)
C180.00405 (9)0.2878 (3)0.47287 (15)0.0166 (5)
C190.01061 (8)0.1925 (3)0.52815 (15)0.0153 (5)
C200.18022 (11)0.3508 (4)0.49717 (18)0.0330 (7)
H20A0.17120.45030.46620.050*
H20B0.16830.25250.46590.050*
H20C0.21460.34480.52370.050*
H20.0542 (6)0.171 (3)0.5956 (17)0.027 (8)*
H30.1041 (7)0.306 (4)0.5351 (19)0.042 (10)*
H40.1730 (9)0.434 (2)0.5790 (13)0.021 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01130 (9)0.01287 (9)0.01497 (11)0.00094 (7)0.00613 (7)0.00093 (7)
Cl10.0175 (3)0.0155 (3)0.0278 (4)0.0006 (3)0.0098 (3)0.0006 (3)
Cl20.0182 (3)0.0206 (3)0.0289 (4)0.0060 (3)0.0151 (3)0.0059 (3)
Cl30.0224 (3)0.0360 (4)0.0157 (4)0.0055 (3)0.0071 (3)0.0004 (3)
Cl40.0147 (3)0.0370 (4)0.0143 (3)0.0024 (3)0.0068 (3)0.0010 (3)
O10.0114 (8)0.0143 (8)0.0242 (11)0.0025 (7)0.0072 (8)0.0018 (7)
O20.0135 (9)0.0271 (10)0.0276 (12)0.0053 (8)0.0096 (9)0.0072 (9)
O30.0120 (9)0.0288 (10)0.0226 (12)0.0037 (8)0.0058 (8)0.0051 (8)
O40.0198 (10)0.0308 (11)0.0220 (12)0.0108 (9)0.0101 (9)0.0093 (9)
N10.0184 (10)0.0129 (10)0.0136 (12)0.0004 (9)0.0084 (9)0.0013 (9)
N20.0138 (10)0.0201 (11)0.0179 (13)0.0030 (9)0.0070 (10)0.0010 (9)
C10.0141 (12)0.0193 (12)0.0118 (14)0.0012 (10)0.0050 (11)0.0017 (10)
C20.0147 (12)0.0179 (12)0.0106 (13)0.0003 (10)0.0045 (11)0.0011 (10)
C30.0147 (12)0.0247 (14)0.0179 (15)0.0033 (11)0.0069 (11)0.0009 (11)
C40.0242 (14)0.0214 (13)0.0218 (17)0.0083 (12)0.0128 (13)0.0048 (12)
C50.0342 (16)0.0137 (13)0.0355 (19)0.0010 (12)0.0221 (15)0.0026 (12)
C60.0221 (13)0.0178 (12)0.0293 (18)0.0016 (11)0.0173 (13)0.0020 (11)
C70.0200 (13)0.0223 (13)0.0164 (15)0.0016 (11)0.0067 (12)0.0002 (11)
C80.0215 (13)0.0229 (13)0.0198 (16)0.0015 (12)0.0110 (12)0.0002 (12)
C90.0161 (12)0.0232 (13)0.0221 (16)0.0039 (11)0.0118 (12)0.0057 (11)
C100.0161 (12)0.0194 (13)0.0168 (15)0.0009 (11)0.0074 (11)0.0043 (11)
C110.0118 (12)0.0288 (14)0.0238 (17)0.0021 (11)0.0079 (12)0.0063 (12)
C120.0153 (13)0.0290 (14)0.0182 (16)0.0006 (11)0.0017 (12)0.0000 (12)
C130.0180 (13)0.0210 (13)0.0167 (15)0.0010 (11)0.0062 (12)0.0013 (11)
C140.0186 (13)0.0282 (15)0.0191 (16)0.0016 (12)0.0036 (12)0.0033 (12)
C150.0261 (14)0.0266 (14)0.0183 (16)0.0019 (12)0.0087 (13)0.0041 (12)
C160.0175 (13)0.0250 (14)0.0217 (17)0.0048 (11)0.0101 (12)0.0027 (12)
C170.0152 (12)0.0174 (12)0.0163 (15)0.0022 (10)0.0044 (11)0.0035 (11)
C180.0155 (12)0.0159 (12)0.0169 (15)0.0036 (10)0.0056 (11)0.0038 (11)
C190.0134 (12)0.0160 (12)0.0150 (14)0.0023 (10)0.0047 (11)0.0046 (10)
C200.0347 (17)0.0435 (18)0.0256 (19)0.0095 (14)0.0175 (15)0.0087 (14)
Geometric parameters (Å, º) top
Sn1—O12.0949 (15)C7—C81.385 (3)
Sn1—N12.2092 (19)C7—H70.9500
Sn1—Cl32.3828 (7)C8—C91.374 (4)
Sn1—Cl22.3851 (6)C8—H80.9500
Sn1—Cl12.3903 (6)C9—C101.403 (4)
Sn1—Cl42.4231 (7)C9—H90.9500
O1—C11.294 (3)C10—C191.414 (3)
O2—C11.220 (3)C10—C111.428 (4)
O3—C171.352 (3)C11—C121.347 (4)
O3—H30.835 (10)C11—H110.9500
O4—C201.431 (3)C12—C131.436 (3)
O4—H40.831 (10)C12—H120.9500
N1—C61.338 (3)C13—C141.394 (4)
N1—C21.342 (3)C13—C181.423 (4)
N2—C71.330 (3)C14—C151.377 (3)
N2—C191.363 (3)C14—H140.9500
N2—H20.870 (10)C15—C161.394 (4)
C1—C21.511 (3)C15—H150.9500
C2—C31.375 (3)C16—C171.382 (4)
C3—C41.381 (4)C16—H160.9500
C3—H3A0.9500C17—C181.422 (3)
C4—C51.378 (4)C18—C191.438 (3)
C4—H4A0.9500C20—H20A0.9800
C5—C61.373 (3)C20—H20B0.9800
C5—H50.9500C20—H20C0.9800
C6—H60.9500
O1—Sn1—N176.37 (7)C8—C7—H7119.9
O1—Sn1—Cl387.87 (5)C9—C8—C7118.5 (2)
N1—Sn1—Cl391.69 (6)C9—C8—H8120.7
O1—Sn1—Cl2169.28 (5)C7—C8—H8120.7
N1—Sn1—Cl292.91 (5)C8—C9—C10121.2 (2)
Cl3—Sn1—Cl292.68 (2)C8—C9—H9119.4
O1—Sn1—Cl193.77 (5)C10—C9—H9119.4
N1—Sn1—Cl1168.64 (5)C9—C10—C19118.7 (2)
Cl3—Sn1—Cl193.58 (2)C9—C10—C11122.1 (2)
Cl2—Sn1—Cl196.88 (2)C19—C10—C11119.2 (2)
O1—Sn1—Cl487.18 (5)C12—C11—C10120.4 (2)
N1—Sn1—Cl483.78 (6)C12—C11—H11119.8
Cl3—Sn1—Cl4173.96 (2)C10—C11—H11119.8
Cl2—Sn1—Cl491.54 (2)C11—C12—C13122.0 (3)
Cl1—Sn1—Cl490.20 (2)C11—C12—H12119.0
C1—O1—Sn1118.61 (15)C13—C12—H12119.0
C17—O3—H3112 (2)C14—C13—C18119.9 (2)
C20—O4—H4109.5 (19)C14—C13—C12120.6 (2)
C6—N1—C2119.2 (2)C18—C13—C12119.6 (2)
C6—N1—Sn1127.39 (16)C15—C14—C13120.5 (3)
C2—N1—Sn1113.00 (15)C15—C14—H14119.8
C7—N2—C19124.3 (2)C13—C14—H14119.8
C7—N2—H2120 (2)C14—C15—C16120.8 (3)
C19—N2—H2115 (2)C14—C15—H15119.6
O2—C1—O1124.9 (2)C16—C15—H15119.6
O2—C1—C2119.1 (2)C17—C16—C15120.1 (2)
O1—C1—C2116.1 (2)C17—C16—H16119.9
N1—C2—C3122.0 (2)C15—C16—H16119.9
N1—C2—C1115.6 (2)O3—C17—C16122.6 (2)
C3—C2—C1122.4 (2)O3—C17—C18117.0 (2)
C2—C3—C4118.7 (2)C16—C17—C18120.4 (2)
C2—C3—H3A120.7C17—C18—C13118.4 (2)
C4—C3—H3A120.7C17—C18—C19124.0 (2)
C5—C4—C3119.2 (2)C13—C18—C19117.7 (2)
C5—C4—H4A120.4N2—C19—C10117.1 (2)
C3—C4—H4A120.4N2—C19—C18121.7 (2)
C6—C5—C4119.3 (2)C10—C19—C18121.1 (2)
C6—C5—H5120.4O4—C20—H20A109.5
C4—C5—H5120.4O4—C20—H20B109.5
N1—C6—C5121.6 (2)H20A—C20—H20B109.5
N1—C6—H6119.2O4—C20—H20C109.5
C5—C6—H6119.2H20A—C20—H20C109.5
N2—C7—C8120.1 (3)H20B—C20—H20C109.5
N2—C7—H7119.9
N1—Sn1—O1—C12.17 (18)N2—C7—C8—C90.6 (4)
Cl3—Sn1—O1—C194.42 (18)C7—C8—C9—C100.1 (4)
Cl2—Sn1—O1—C11.2 (4)C8—C9—C10—C190.7 (4)
Cl1—Sn1—O1—C1172.13 (18)C8—C9—C10—C11178.4 (2)
Cl4—Sn1—O1—C182.12 (18)C9—C10—C11—C12179.8 (2)
O1—Sn1—N1—C6177.6 (2)C19—C10—C11—C120.7 (4)
Cl3—Sn1—N1—C695.0 (2)C10—C11—C12—C130.5 (4)
Cl2—Sn1—N1—C62.2 (2)C11—C12—C13—C14179.7 (3)
Cl1—Sn1—N1—C6147.4 (2)C11—C12—C13—C181.1 (4)
Cl4—Sn1—N1—C689.0 (2)C18—C13—C14—C150.2 (4)
O1—Sn1—N1—C24.76 (17)C12—C13—C14—C15179.4 (3)
Cl3—Sn1—N1—C292.16 (17)C13—C14—C15—C160.1 (4)
Cl2—Sn1—N1—C2175.07 (17)C14—C15—C16—C170.1 (4)
Cl1—Sn1—N1—C225.5 (4)C15—C16—C17—O3178.8 (2)
Cl4—Sn1—N1—C283.84 (17)C15—C16—C17—C180.6 (4)
Sn1—O1—C1—O2179.9 (2)O3—C17—C18—C13178.5 (2)
Sn1—O1—C1—C20.6 (3)C16—C17—C18—C130.9 (4)
C6—N1—C2—C30.0 (4)O3—C17—C18—C191.1 (4)
Sn1—N1—C2—C3173.5 (2)C16—C17—C18—C19179.4 (2)
C6—N1—C2—C1180.0 (2)C14—C13—C18—C170.7 (4)
Sn1—N1—C2—C16.5 (3)C12—C13—C18—C17179.9 (2)
O2—C1—C2—N1175.7 (2)C14—C13—C18—C19179.6 (2)
O1—C1—C2—N14.9 (3)C12—C13—C18—C190.4 (4)
O2—C1—C2—C34.3 (4)C7—N2—C19—C100.5 (4)
O1—C1—C2—C3175.1 (3)C7—N2—C19—C18179.9 (2)
N1—C2—C3—C40.0 (4)C9—C10—C19—N21.0 (3)
C1—C2—C3—C4180.0 (2)C11—C10—C19—N2178.1 (2)
C2—C3—C4—C50.4 (4)C9—C10—C19—C18179.5 (2)
C3—C4—C5—C60.7 (4)C11—C10—C19—C181.4 (4)
C2—N1—C6—C50.4 (4)C17—C18—C19—N21.7 (4)
Sn1—N1—C6—C5172.9 (2)C13—C18—C19—N2178.7 (2)
C4—C5—C6—N10.8 (5)C17—C18—C19—C10178.8 (2)
C19—N2—C7—C80.3 (4)C13—C18—C19—C100.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.84 (1)1.73 (1)2.554 (2)170 (3)
O4—H4···O20.83 (1)1.87 (1)2.698 (3)174 (3)
N2—H2···Cl4i0.87 (1)2.58 (2)3.255 (2)135 (2)
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C13H10NO)[SnCl4(C6H4NO2)]·CH4O
Mr610.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)31.5065 (11), 8.0802 (2), 20.0948 (9)
β (°) 115.722 (5)
V3)4608.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.645, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
15316, 5326, 4445
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.02
No. of reflections5326
No. of parameters293
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.44

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.84 (1)1.73 (1)2.554 (2)170 (3)
O4—H4···O20.83 (1)1.87 (1)2.698 (3)174 (3)
N2—H2···Cl4i0.87 (1)2.58 (2)3.255 (2)135 (2)
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m744.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds