organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1768-o1769

6-Methyl-1-({[(2E)-2-methyl-3-phenyl­prop-2-en-1-yl]­­oxy}meth­yl)-1,2,3,4-tetra­hydro­quinazoline-2,4-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 May 2012; accepted 7 May 2012; online 19 May 2012)

In the title compound, C20H20N2O3, the ten atoms comprising the quinazoline ring are essentially planar (r.m.s. deviation = 0.024 Å), and this plane is almost orthogonal to the terminal phenyl ring [dihedral angle = 82.87 (7)°]. The conformation about the ethyl­ene bond [1.335 (2) Å] is E and there is a significant twist between this residue and the adjacent phenyl ring [C—C—C— torsion angle = −48.4 (3)°]. The crystal structure features centrosymmetric dimeric units linked by pairs of N—H⋯O hydrogen bonds between the amide groups which lead to eight-membered {⋯HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C—H⋯O, C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.5087 (8) and 3.5645 (9) Å].

Related literature

For background to non-nucleoside reverse transcriptase inhib­itors, see: Hopkins et al. (1996[Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.], 1999[Hopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500-4505.]); El-Brollosy et al. (2008[El-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9-19.], 2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663-670.]). For a related structure, see: El-Brollosy et al. (2012[El-Brollosy, N. R., Attia, M. I., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1770-o1771.]). For the synthesis, see: El-Brollosy (2007[El-Brollosy, N. R. (2007). J. Chem. Res. pp. 358-361.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O3

  • Mr = 336.38

  • Monoclinic, P 21 /c

  • a = 16.2352 (8) Å

  • b = 13.6934 (6) Å

  • c = 7.8900 (4) Å

  • β = 102.606 (5)°

  • V = 1711.78 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.522, Tmax = 1.000

  • 13993 measured reflections

  • 3965 independent reflections

  • 3067 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.02

  • 3965 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8–C8 and C15–C20 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.93 (2) 1.89 (2) 2.8180 (16) 172.9 (17)
C10—H10B⋯O1ii 0.99 2.49 3.3001 (18) 139
C11—H11B⋯O3iii 0.99 2.56 3.4462 (18) 150
C14—H14⋯Cg3iv 0.95 2.85 3.5574 (18) 132
C18—H18⋯Cg2iv 0.95 2.91 3.680 (2) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our interest in chemistry of non-nucleoside reverse transcriptase inhibitors (NNRTI's) (El-Brollosy et al., 2008; El-Brollosy et al., 2009), relevant to the treatment of human immunodeficiency virus (HIV) (Hopkins et al., 1996; Hopkins et al., 1999), we synthesized the title compound, 6-methyl-1-[((E)-2-methyl-3-phenylallyloxy)methyl]quinazoline-2,4(1H,3H)-dione (I), as a potential NNRTI (El-Brollosy, 2007). Herein, we describe the results of its crystal structure determination to complement the structure determination of the recently determined chloro analogue (El-Brollosy et al., 2012).

The 10 atoms comprising the quinazoline ring in (I), Fig. 1, are co-planar with a r.m.s. = 0.024 Å; the maximum deviations from their least-squares plane are 0.036 (1) Å for the C2 atom and -0.032 (1) Å for the N2 atom. The dihedral angle between the fused ring system and the terminal phenyl ring of 82.87 (7)° is consistent with an almost orthogonal relationship. The conformation about the ethylene bond [C12C14 = 1.335 (2) Å] is E. The torsion angle between the ethylene and phenyl rings, i.e. C12—C14—C15—C16, of -48.4 (3)° indicates a significant twist about the C14—C15 bond. Overall, the molecule in (I) is significantly more twisted than that observed in the chloro analogue (El-Brollosy et al., 2012).

In the crystal structure, centrosymmetrically related molecules are connected via N—H···O hydrogen bonds between the amide groups (involving the carbonyl-O closest to the tertiary-N atom) which lead to eight-membered {···HNCO}2 synthons, Table 1. The dimeric aggregates are consolidated into a three-dimensional architecture by C—H···O and C—H···π interactions, Table 1, as well as by ππ contacts [ring centroid(N1,N2,C1–C3,C8)···centroid(N1,N2,C1–C3,C8)i = 3.5087 (8) Å and tilt angle = 0° and ring centroid(N1,N2,C1–C3,C8)···centroid(C3–C8)i = 3.5645 (9) Å and tilt angle = 1.85 (7)°, for symmetry operation i: 1 - x, 1 - y, -z). Globally, the crystal structure comprises alternating layers of quinazoline rings and 2-methyl-3-phenylallyloxy)methyl residues that stack along the a axis, Fig. 2.

Related literature top

For background to non-nucleoside reverse transcriptase inhibitors, see: Hopkins et al. (1996, 1999); El-Brollosy et al. (2008, 2009). For a related structure, see: El-Brollosy et al. (2012). For the synthesis, see: El-Brollosy (2007).

Experimental top

6-Methylquinazoline-2,4(1H,3H)dione (0.176 g, 1 mmol) was stirred in dry acetonitrile (15 ml) under nitrogen and N,O-bis(trimethylsilyl)acetamide (0.87 ml, 3.5 mmol) was added. After a clear solution was obtained (10 min), the mixture was cooled to 223 K and trimethylsilyl trifluoromethanesulfonate (0.18 ml, 1 mmol) was added followed by the drop-wise addition of bis[(E)-2-methyl-3-phenylallyloxy]methane (0.616 g, 2 mmol). The reaction mixture was stirred at room temperature for 5 h, after which the reaction was quenched by the addition of sat. aq. NaHCO3 solution (5 ml). The mixture was evaporated under reduced pressure and the residue was extracted with ether (3 × 50 ml). The combined ether fractions were collected, dried (MgSO4) and evaporated under reduced pressure. The product was purified on silica gel column chromatography, using 20% ether in petroleum ether (40–60°C), to afford the title compound as a white solid in 78% yield (0.262 g). Single crystals were achieved by recrystallization from its ethanol solution (El-Brollosy 2007).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents for (I). The N—H···O, C—H···O, C—H···π and ππ interactions are shown as blue, orange, purple and brown dashed lines, respectively.
6-Methyl-1-({[(2E)-2-methyl-3-phenylprop-2-en-1-yl]oxy}methyl)- 1,2,3,4-tetrahydroquinazoline-2,4-dione top
Crystal data top
C20H20N2O3F(000) = 712
Mr = 336.38Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4710 reflections
a = 16.2352 (8) Åθ = 2.6–27.5°
b = 13.6934 (6) ŵ = 0.09 mm1
c = 7.8900 (4) ÅT = 100 K
β = 102.606 (5)°Prism, colourless
V = 1711.78 (14) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3965 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3067 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = 2120
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1717
Tmin = 0.522, Tmax = 1.000l = 108
13993 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.6389P]
where P = (Fo2 + 2Fc2)/3
3965 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H20N2O3V = 1711.78 (14) Å3
Mr = 336.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2352 (8) ŵ = 0.09 mm1
b = 13.6934 (6) ÅT = 100 K
c = 7.8900 (4) Å0.40 × 0.20 × 0.10 mm
β = 102.606 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3965 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3067 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 1.000Rint = 0.048
13993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
3965 reflectionsΔρmin = 0.25 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51870 (7)0.31276 (7)0.15509 (14)0.0230 (3)
O20.55774 (7)0.59676 (8)0.45728 (13)0.0209 (2)
O30.72545 (6)0.70049 (7)0.27942 (13)0.0190 (2)
N10.53851 (8)0.45651 (9)0.30019 (16)0.0180 (3)
H1n0.5078 (12)0.4335 (14)0.379 (2)0.030 (5)*
N20.60917 (7)0.58944 (9)0.21014 (16)0.0162 (3)
C10.54810 (9)0.39555 (10)0.16689 (19)0.0174 (3)
C20.56805 (9)0.55065 (10)0.32956 (18)0.0169 (3)
C30.62603 (9)0.53339 (11)0.07198 (18)0.0163 (3)
C40.67248 (9)0.57169 (11)0.04270 (19)0.0186 (3)
H40.69320.63670.02840.022*
C50.68806 (9)0.51480 (11)0.17644 (19)0.0204 (3)
H50.71980.54180.25300.024*
C60.65885 (9)0.41867 (11)0.20352 (19)0.0202 (3)
C70.61195 (9)0.38169 (11)0.09098 (19)0.0189 (3)
H70.59010.31720.10780.023*
C80.59609 (9)0.43757 (11)0.04694 (18)0.0169 (3)
C90.67858 (11)0.35752 (12)0.3488 (2)0.0270 (4)
H9A0.62990.31620.39770.041*
H9B0.72770.31620.30340.041*
H9C0.69090.40040.43960.041*
C100.63668 (9)0.69150 (10)0.23222 (19)0.0176 (3)
H10A0.61550.72720.12220.021*
H10B0.61170.72210.32300.021*
C110.76134 (9)0.65578 (11)0.44431 (19)0.0201 (3)
H11A0.75360.58410.43540.024*
H11B0.73210.68020.53360.024*
C120.85380 (10)0.67948 (11)0.49682 (19)0.0213 (3)
C130.87568 (10)0.78634 (12)0.5069 (2)0.0258 (4)
H13A0.93510.79450.56500.039*
H13B0.83990.82060.57290.039*
H13C0.86630.81350.38930.039*
C140.90837 (10)0.60631 (12)0.5433 (2)0.0248 (4)
H140.88550.54220.52980.030*
C151.00037 (10)0.61367 (12)0.6133 (2)0.0289 (4)
C161.03668 (12)0.55823 (14)0.7593 (3)0.0376 (4)
H161.00200.51680.81050.045*
C171.12270 (13)0.56292 (15)0.8303 (3)0.0468 (5)
H171.14640.52570.93070.056*
C181.17373 (12)0.62174 (16)0.7550 (3)0.0481 (6)
H181.23260.62490.80380.058*
C191.13958 (12)0.67605 (15)0.6089 (3)0.0430 (5)
H191.17490.71630.55700.052*
C201.05311 (11)0.67162 (14)0.5379 (3)0.0342 (4)
H201.02990.70860.43680.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (6)0.0164 (5)0.0286 (6)0.0030 (4)0.0084 (5)0.0003 (4)
O20.0243 (6)0.0206 (5)0.0193 (6)0.0032 (4)0.0079 (4)0.0011 (4)
O30.0172 (5)0.0208 (5)0.0190 (5)0.0022 (4)0.0041 (4)0.0018 (4)
N10.0191 (6)0.0181 (6)0.0180 (6)0.0017 (5)0.0064 (5)0.0020 (5)
N20.0163 (6)0.0156 (6)0.0169 (6)0.0016 (5)0.0039 (5)0.0002 (5)
C10.0152 (7)0.0171 (7)0.0190 (7)0.0009 (6)0.0021 (5)0.0021 (6)
C20.0142 (7)0.0183 (7)0.0176 (7)0.0013 (6)0.0023 (5)0.0012 (6)
C30.0138 (7)0.0174 (7)0.0165 (7)0.0019 (6)0.0005 (5)0.0006 (5)
C40.0176 (7)0.0176 (7)0.0201 (7)0.0014 (6)0.0029 (6)0.0014 (6)
C50.0178 (7)0.0246 (8)0.0192 (7)0.0016 (6)0.0050 (6)0.0035 (6)
C60.0191 (7)0.0224 (8)0.0185 (7)0.0035 (6)0.0031 (6)0.0002 (6)
C70.0179 (7)0.0175 (7)0.0195 (7)0.0010 (6)0.0003 (6)0.0008 (6)
C80.0136 (7)0.0171 (7)0.0191 (7)0.0017 (6)0.0018 (5)0.0027 (6)
C90.0333 (9)0.0248 (8)0.0247 (8)0.0034 (7)0.0103 (7)0.0021 (7)
C100.0179 (7)0.0151 (7)0.0198 (7)0.0005 (6)0.0040 (5)0.0000 (5)
C110.0205 (8)0.0209 (8)0.0191 (7)0.0008 (6)0.0050 (6)0.0018 (6)
C120.0212 (8)0.0249 (8)0.0180 (7)0.0007 (6)0.0046 (6)0.0024 (6)
C130.0207 (8)0.0237 (8)0.0321 (9)0.0002 (7)0.0039 (6)0.0027 (7)
C140.0236 (8)0.0240 (8)0.0258 (8)0.0001 (7)0.0031 (6)0.0028 (6)
C150.0240 (9)0.0244 (8)0.0356 (10)0.0048 (7)0.0008 (7)0.0077 (7)
C160.0331 (10)0.0315 (10)0.0426 (11)0.0059 (8)0.0043 (8)0.0014 (8)
C170.0359 (11)0.0375 (11)0.0555 (13)0.0104 (9)0.0148 (9)0.0033 (9)
C180.0217 (9)0.0396 (11)0.0736 (15)0.0072 (9)0.0104 (9)0.0158 (11)
C190.0239 (9)0.0392 (11)0.0642 (14)0.0002 (8)0.0057 (9)0.0135 (10)
C200.0250 (9)0.0338 (10)0.0419 (11)0.0038 (8)0.0034 (8)0.0059 (8)
Geometric parameters (Å, º) top
O1—C11.2257 (18)C10—H10A0.9900
O2—C21.2311 (17)C10—H10B0.9900
O3—C101.4130 (17)C11—C121.503 (2)
O3—C111.4409 (18)C11—H11A0.9900
N1—C11.3780 (19)C11—H11B0.9900
N1—C21.3773 (19)C12—C141.335 (2)
N1—H1n0.93 (2)C12—C131.504 (2)
N2—C21.3749 (18)C13—H13A0.9800
N2—C31.4081 (18)C13—H13B0.9800
N2—C101.4659 (18)C13—H13C0.9800
C1—C81.468 (2)C14—C151.479 (2)
C3—C81.398 (2)C14—H140.9500
C3—C41.400 (2)C15—C201.393 (3)
C4—C51.379 (2)C15—C161.397 (3)
C4—H40.9500C16—C171.388 (3)
C5—C61.400 (2)C16—H160.9500
C5—H50.9500C17—C181.379 (3)
C6—C71.386 (2)C17—H170.9500
C6—C91.509 (2)C18—C191.382 (3)
C7—C81.399 (2)C18—H180.9500
C7—H70.9500C19—C201.395 (3)
C9—H9A0.9800C19—H190.9500
C9—H9B0.9800C20—H200.9500
C9—H9C0.9800
C10—O3—C11112.91 (11)O3—C10—H10B109.1
C1—N1—C2127.03 (13)N2—C10—H10B109.1
C1—N1—H1n118.0 (12)H10A—C10—H10B107.9
C2—N1—H1n114.9 (12)O3—C11—C12109.88 (12)
C2—N2—C3121.70 (12)O3—C11—H11A109.7
C2—N2—C10117.89 (12)C12—C11—H11A109.7
C3—N2—C10120.40 (11)O3—C11—H11B109.7
O1—C1—N1120.75 (13)C12—C11—H11B109.7
O1—C1—C8124.49 (13)H11A—C11—H11B108.2
N1—C1—C8114.76 (12)C14—C12—C13125.52 (14)
O2—C2—N2122.40 (13)C14—C12—C11118.48 (14)
O2—C2—N1120.88 (13)C13—C12—C11115.78 (13)
N2—C2—N1116.72 (12)C12—C13—H13A109.5
C8—C3—C4118.68 (13)C12—C13—H13B109.5
C8—C3—N2120.03 (13)H13A—C13—H13B109.5
C4—C3—N2121.29 (13)C12—C13—H13C109.5
C5—C4—C3119.85 (13)H13A—C13—H13C109.5
C5—C4—H4120.1H13B—C13—H13C109.5
C3—C4—H4120.1C12—C14—C15127.40 (15)
C4—C5—C6122.38 (14)C12—C14—H14116.3
C4—C5—H5118.8C15—C14—H14116.3
C6—C5—H5118.8C20—C15—C16118.26 (16)
C7—C6—C5117.47 (14)C20—C15—C14122.97 (16)
C7—C6—C9121.41 (14)C16—C15—C14118.75 (17)
C5—C6—C9121.12 (14)C17—C16—C15120.9 (2)
C6—C7—C8121.24 (14)C17—C16—H16119.5
C6—C7—H7119.4C15—C16—H16119.5
C8—C7—H7119.4C18—C17—C16119.9 (2)
C3—C8—C7120.38 (13)C18—C17—H17120.0
C3—C8—C1119.59 (13)C16—C17—H17120.0
C7—C8—C1120.04 (13)C17—C18—C19120.27 (18)
C6—C9—H9A109.5C17—C18—H18119.9
C6—C9—H9B109.5C19—C18—H18119.9
H9A—C9—H9B109.5C18—C19—C20119.8 (2)
C6—C9—H9C109.5C18—C19—H19120.1
H9A—C9—H9C109.5C20—C19—H19120.1
H9B—C9—H9C109.5C15—C20—C19120.78 (18)
O3—C10—N2112.40 (11)C15—C20—H20119.6
O3—C10—H10A109.1C19—C20—H20119.6
N2—C10—H10A109.1
C2—N1—C1—O1179.94 (14)C6—C7—C8—C1178.37 (13)
C2—N1—C1—C80.7 (2)O1—C1—C8—C3179.38 (14)
C3—N2—C2—O2175.15 (13)N1—C1—C8—C31.44 (19)
C10—N2—C2—O23.8 (2)O1—C1—C8—C70.9 (2)
C3—N2—C2—N14.7 (2)N1—C1—C8—C7178.28 (13)
C10—N2—C2—N1176.31 (12)C11—O3—C10—N262.48 (15)
C1—N1—C2—O2177.56 (14)C2—N2—C10—O3111.14 (14)
C1—N1—C2—N22.3 (2)C3—N2—C10—O367.84 (16)
C2—N2—C3—C84.1 (2)C10—O3—C11—C12172.58 (12)
C10—N2—C3—C8176.95 (12)O3—C11—C12—C14128.83 (15)
C2—N2—C3—C4176.01 (13)O3—C11—C12—C1356.34 (17)
C10—N2—C3—C42.9 (2)C13—C12—C14—C150.0 (3)
C8—C3—C4—C50.3 (2)C11—C12—C14—C15174.30 (15)
N2—C3—C4—C5179.85 (13)C12—C14—C15—C2048.4 (3)
C3—C4—C5—C60.1 (2)C12—C14—C15—C16133.26 (19)
C4—C5—C6—C70.7 (2)C20—C15—C16—C171.9 (3)
C4—C5—C6—C9178.65 (14)C14—C15—C16—C17179.73 (17)
C5—C6—C7—C81.5 (2)C15—C16—C17—C181.0 (3)
C9—C6—C7—C8177.92 (14)C16—C17—C18—C190.0 (3)
C4—C3—C8—C70.4 (2)C17—C18—C19—C200.3 (3)
N2—C3—C8—C7179.44 (13)C16—C15—C20—C191.6 (3)
C4—C3—C8—C1179.28 (13)C14—C15—C20—C19179.96 (16)
N2—C3—C8—C10.8 (2)C18—C19—C20—C150.6 (3)
C6—C7—C8—C31.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C8 and C15–C20 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.93 (2)1.89 (2)2.8180 (16)172.9 (17)
C10—H10B···O1ii0.992.493.3001 (18)139
C11—H11B···O3iii0.992.563.4462 (18)150
C14—H14···Cg3iv0.952.853.5574 (18)132
C18—H18···Cg2iv0.952.913.680 (2)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H20N2O3
Mr336.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.2352 (8), 13.6934 (6), 7.8900 (4)
β (°) 102.606 (5)
V3)1711.78 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.522, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13993, 3965, 3067
Rint0.048
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.02
No. of reflections3965
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C8 and C15–C20 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.93 (2)1.89 (2)2.8180 (16)172.9 (17)
C10—H10B···O1ii0.992.493.3001 (18)139
C11—H11B···O3iii0.992.563.4462 (18)150
C14—H14···Cg3iv0.952.853.5574 (18)132
C18—H18···Cg2iv0.952.913.680 (2)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: brollosy@yahoo.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Brollosy, N. R. (2007). J. Chem. Res. pp. 358–361.  Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663–670.  CAS Google Scholar
First citationEl-Brollosy, N. R., Attia, M. I., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1770–o1771.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9–19.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500–4505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1768-o1769
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds