organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1770-o1771

6-Chloro-1-({[(2E)-2-methyl-3-phenyl­prop-2-en-1-yl]­­oxy}meth­yl)-1,2,3,4-tetra­hydro­quinazoline-2,4-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 May 2012; accepted 7 May 2012; online 19 May 2012)

In the title compound, C19H17ClN2O3, the conformation about the ethyl­ene bond [1.333 (2) Å] is E. The ten atoms comprising the quinazoline ring are essentially planar (r.m.s. deviation = 0.032 Å) and their mean plane forms a dihedral angle of 13.89 (7)° with the terminal phenyl ring; the mol­ecule has an open conformation as these substituents are directed away from each other. In the crystal, centrosymmetrically related mol­ecules are connected via N—H⋯O hydrogen bonds between the amide groups, leading to eight-membered {⋯HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C—H⋯O, C—H⋯π and ππ inter­actions [ring centroid(N2C4)⋯centroid(C6) distance = 3.5820 (11) Å].

Related literature

For background to non-nucleoside reverse transcriptase inhib­itors, see: Hopkins et al. (1996[Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.], 1999[Hopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500-4505.]); El-Brollosy et al. (2008[El-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9-19.], 2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663-670.]). For a related structure, see: El-Brollosy et al. (2012[El-Brollosy, N. R., Attia, M. I., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1768-o1769.]). For the synthesis, see: El-Brollosy (2007[El-Brollosy, N. R. (2007). J. Chem. Res. pp. 358-361.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN2O3

  • Mr = 356.80

  • Triclinic, [P \overline 1]

  • a = 7.6179 (3) Å

  • b = 9.8168 (4) Å

  • c = 11.7009 (6) Å

  • α = 73.937 (4)°

  • β = 83.651 (3)°

  • γ = 80.942 (3)°

  • V = 828.31 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.904, Tmax = 1.000

  • 13263 measured reflections

  • 3817 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.04

  • 3817 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.85 (2) 2.05 (2) 2.8932 (18) 168.9 (19)
C4—H4⋯O1ii 0.95 2.57 3.382 (2) 144
C5—H5⋯O3iii 0.95 2.57 3.427 (2) 150
C9—H9B⋯O1ii 0.99 2.38 3.232 (2) 144
C10—H10ACg1iv 0.99 2.69 3.612 (2) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) -x, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Non-nucleoside reverse transcriptase inhibitors (NNRTI's) are very promising therapies in the treatment of human immunodeficiency virus (HIV) (Hopkins et al., 1996; Hopkins et al., 1999). In continuation to our interest in the chemistry of NNRTI's (El-Brollosy et al., 2008; El-Brollosy et al., 2009), we synthesized the title compound, 6-chloro-1-[((E)-2-methyl-3-phenylallyloxy)methyl]quinazoline-2,4(1H,3H)-dione (I), as a potential NNRTI (El-Brollosy, 2007). Herein, we describe the results of its crystal structure determination and relate this to the structure of the recently determined methyl analogue (El-Brollosy et al., 2012).

In (I), Fig. 1, the conformation about the ethylene bond [C11C13 = 1.333 (2) Å] is E. The 10 atoms comprising the quinazoline ring are planar with a r.m.s. = 0.032 Å; the maximum deviations from the least-squares plane = 0.051 (2) Å for the C1 atom and -0.046 (2) Å for the C2 atom. The dihedral angle between the fused ring system and the terminal phenyl ring of 13.89 (7)° is consistent with a twisted molecule; these substituents are directed away from each other so that the molecule has an open conformation. The torsion angle between the ethylene and phenyl rings, i.e. C11—C13—C14—C15, of 25.9 (3)° indicates a significant twist in this region of the molecule. However twisted the molecule of (I) is, it is less twisted than the methyl analogue where the dihedral angle between the quinazoline and phenyl rings was found to be 82.87 (7)° (El-Brollosy et al., 2012).

Centrosymmetrically related molecules are connected via N—H···O hydrogen bonds between the amide groups (involving the carbonyl-O closest to the tertiary-N atom) and lead to eight-membered {···HNCO}2 synthons, Table 1. These are consolidated into a three-dimensional architecture by C—H···O and C—H···π interactions, Table 1, and ππ contacts [ring centroid(N1,N2,C1–C3,C8)···centroid(C14–C19)i = 3.5820 (11) Å and tilt angle = 13.17 (9)°, for symmetry operation i: -x, 1 - y, 1 - z). Globally, the crystal structure comprises alternating layers of quinazoline rings and 2-methyl-3-phenylallyloxy)methyl residues that stack along the b axis, Fig. 2.

Related literature top

For background to non-nucleoside reverse transcriptase inhibitors, see: Hopkins et al. (1996, 1999); El-Brollosy et al. (2008, 2009). For a related structure, see: El-Brollosy et al. (2012). For the synthesis, see: El-Brollosy (2007).

Experimental top

6-Chloroquinazoline-2,4(1H,3H)-dione (0.197 g, 1 mmol) was stirred in dry acetonitrile (15 ml) under nitrogen and N,O-bis(trimethylsilyl)acetamide (0.87 ml, 3.5 mmol) added. After a clear solution was obtained (10 min), the mixture was cooled to 223 K, and trimethylsilyl trifluoromethanesulfonate (0.18 ml, 1 mmol) was added followed by the drop wise addition of bis[(E)-2-methyl-3-phenylallyloxy]methane (0.616 g, 2 mmol). The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched by the addition of saturated aq. NaHCO3 solution (5 ml). The mixture was evaporated under reduced pressure and the residue was extracted with ether (3 × 50 ml). The combined ether fractions were collected, dried (MgSO4) and evaporated under reduced pressure. The product was purified by silica gel column chromatography, using 20% ether in petroleum ether (40–60 °C), to afford the title compound as a white solid in 81% yield (0.288 g). Single crystals were achieved by crystallization from its ethanol solution (El-Brollosy, 2007).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for (I). The N—H···O, C—H···O, C—H···π and ππ interactions are shown as blue, orange, purple and brown dashed lines, respectively.
6-Chloro-1-({[(2E)-2-methyl-3-phenylprop-2-en-1-yl]oxy}methyl)- 1,2,3,4-tetrahydroquinazoline-2,4-dione top
Crystal data top
C19H17ClN2O3Z = 2
Mr = 356.80F(000) = 372
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6179 (3) ÅCell parameters from 5016 reflections
b = 9.8168 (4) Åθ = 2.4–27.5°
c = 11.7009 (6) ŵ = 0.25 mm1
α = 73.937 (4)°T = 100 K
β = 83.651 (3)°Prism, colourless
γ = 80.942 (3)°0.35 × 0.30 × 0.15 mm
V = 828.31 (6) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3817 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3107 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.904, Tmax = 1.000l = 1515
13263 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.2968P]
where P = (Fo2 + 2Fc2)/3
3817 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H17ClN2O3γ = 80.942 (3)°
Mr = 356.80V = 828.31 (6) Å3
Triclinic, P1Z = 2
a = 7.6179 (3) ÅMo Kα radiation
b = 9.8168 (4) ŵ = 0.25 mm1
c = 11.7009 (6) ÅT = 100 K
α = 73.937 (4)°0.35 × 0.30 × 0.15 mm
β = 83.651 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3817 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3107 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 1.000Rint = 0.040
13263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
3817 reflectionsΔρmin = 0.27 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38928 (5)0.76323 (5)0.23450 (4)0.02434 (13)
N10.49947 (18)0.56212 (15)0.32224 (13)0.0176 (3)
H1n0.570 (3)0.554 (2)0.377 (2)0.028 (5)*
N20.21281 (17)0.53780 (14)0.28304 (12)0.0155 (3)
O10.69610 (15)0.66966 (14)0.17823 (11)0.0257 (3)
O20.30631 (15)0.46261 (13)0.47243 (10)0.0204 (3)
O30.00414 (15)0.38341 (12)0.28957 (10)0.0204 (3)
C10.5525 (2)0.62527 (18)0.20503 (15)0.0184 (3)
C20.3372 (2)0.51704 (17)0.36544 (15)0.0161 (3)
C30.2530 (2)0.59293 (16)0.16058 (14)0.0149 (3)
C40.1268 (2)0.60638 (18)0.07786 (15)0.0185 (3)
H40.01160.57980.10470.022*
C50.1707 (2)0.65856 (18)0.04289 (15)0.0190 (3)
H50.08580.66710.09900.023*
C60.3390 (2)0.69845 (17)0.08203 (15)0.0182 (3)
C70.4642 (2)0.68767 (17)0.00267 (15)0.0180 (3)
H70.57840.71600.03030.022*
C80.4207 (2)0.63424 (17)0.11936 (15)0.0159 (3)
C90.0336 (2)0.50004 (17)0.32680 (15)0.0173 (3)
H9A0.02350.47580.41500.021*
H9B0.05590.58390.29740.021*
C100.1126 (2)0.25517 (18)0.33274 (16)0.0228 (4)
H10A0.23690.27630.31300.027*
H10B0.09500.18520.28960.027*
C110.0895 (2)0.18595 (17)0.46551 (16)0.0193 (4)
C120.2574 (2)0.0954 (2)0.51400 (17)0.0265 (4)
H12A0.22660.01000.57490.040*
H12B0.32170.15060.54950.040*
H12C0.33320.06660.44910.040*
C130.0679 (2)0.20299 (18)0.52568 (16)0.0211 (4)
H130.15940.26630.48180.025*
C140.1176 (2)0.13561 (18)0.65213 (16)0.0219 (4)
C150.0034 (3)0.0873 (2)0.74056 (17)0.0277 (4)
H150.12360.10510.72170.033*
C160.0489 (3)0.0139 (2)0.85514 (18)0.0345 (5)
H160.03690.02100.91310.041*
C170.2235 (3)0.0093 (2)0.88651 (19)0.0370 (5)
H170.25770.06120.96510.044*
C180.3487 (3)0.0438 (2)0.8023 (2)0.0346 (5)
H180.47020.03110.82350.042*
C190.2959 (2)0.11572 (19)0.68646 (18)0.0267 (4)
H190.38270.15220.62940.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0269 (2)0.0308 (2)0.0125 (2)0.00363 (18)0.00140 (16)0.00102 (17)
N10.0145 (7)0.0237 (7)0.0145 (7)0.0037 (6)0.0058 (6)0.0025 (6)
N20.0141 (6)0.0203 (7)0.0117 (7)0.0025 (5)0.0029 (5)0.0025 (5)
O10.0153 (6)0.0385 (7)0.0207 (7)0.0082 (5)0.0041 (5)0.0004 (6)
O20.0193 (6)0.0284 (6)0.0130 (6)0.0051 (5)0.0049 (5)0.0020 (5)
O30.0241 (6)0.0221 (6)0.0160 (6)0.0070 (5)0.0061 (5)0.0025 (5)
C10.0161 (8)0.0212 (8)0.0170 (9)0.0019 (6)0.0026 (6)0.0031 (7)
C20.0170 (7)0.0171 (8)0.0152 (8)0.0015 (6)0.0045 (6)0.0052 (6)
C30.0166 (7)0.0147 (7)0.0130 (8)0.0012 (6)0.0025 (6)0.0029 (6)
C40.0172 (8)0.0222 (8)0.0164 (9)0.0041 (6)0.0036 (6)0.0038 (7)
C50.0197 (8)0.0215 (8)0.0159 (9)0.0025 (7)0.0063 (6)0.0030 (7)
C60.0229 (8)0.0189 (8)0.0113 (8)0.0004 (7)0.0021 (6)0.0021 (6)
C70.0154 (7)0.0201 (8)0.0170 (9)0.0018 (6)0.0009 (6)0.0028 (7)
C80.0155 (7)0.0169 (8)0.0148 (8)0.0001 (6)0.0028 (6)0.0036 (6)
C90.0159 (7)0.0218 (8)0.0141 (8)0.0038 (6)0.0020 (6)0.0034 (7)
C100.0268 (9)0.0221 (9)0.0203 (9)0.0039 (7)0.0012 (7)0.0071 (7)
C110.0228 (8)0.0168 (8)0.0197 (9)0.0045 (6)0.0059 (7)0.0044 (7)
C120.0263 (9)0.0284 (9)0.0244 (10)0.0015 (7)0.0051 (7)0.0081 (8)
C130.0228 (8)0.0186 (8)0.0209 (9)0.0024 (7)0.0069 (7)0.0019 (7)
C140.0279 (9)0.0163 (8)0.0217 (9)0.0037 (7)0.0006 (7)0.0058 (7)
C150.0339 (10)0.0279 (10)0.0212 (10)0.0006 (8)0.0028 (8)0.0077 (8)
C160.0504 (12)0.0326 (11)0.0189 (10)0.0022 (9)0.0042 (9)0.0078 (8)
C170.0606 (14)0.0278 (10)0.0218 (11)0.0097 (10)0.0097 (10)0.0082 (8)
C180.0408 (11)0.0285 (10)0.0380 (12)0.0131 (9)0.0149 (9)0.0167 (9)
C190.0298 (9)0.0224 (9)0.0297 (11)0.0045 (7)0.0009 (8)0.0105 (8)
Geometric parameters (Å, º) top
Cl1—C61.7412 (17)C9—H9B0.9900
N1—C21.375 (2)C10—C111.516 (2)
N1—C11.383 (2)C10—H10A0.9900
N1—H1n0.85 (2)C10—H10B0.9900
N2—C21.379 (2)C11—C131.333 (2)
N2—C31.402 (2)C11—C121.507 (2)
N2—C91.471 (2)C12—H12A0.9800
O1—C11.2181 (19)C12—H12B0.9800
O2—C21.2298 (19)C12—H12C0.9800
O3—C91.4109 (19)C13—C141.478 (2)
O3—C101.423 (2)C13—H130.9500
C1—C81.472 (2)C14—C151.395 (3)
C3—C81.395 (2)C14—C191.401 (2)
C3—C41.405 (2)C15—C161.383 (3)
C4—C51.385 (2)C15—H150.9500
C4—H40.9500C16—C171.378 (3)
C5—C61.391 (2)C16—H160.9500
C5—H50.9500C17—C181.386 (3)
C6—C71.376 (2)C17—H170.9500
C7—C81.400 (2)C18—C191.391 (3)
C7—H70.9500C18—H180.9500
C9—H9A0.9900C19—H190.9500
C2—N1—C1127.24 (14)O3—C10—C11115.55 (14)
C2—N1—H1n113.6 (14)O3—C10—H10A108.4
C1—N1—H1n119.0 (14)C11—C10—H10A108.4
C2—N2—C3121.94 (13)O3—C10—H10B108.4
C2—N2—C9118.11 (13)C11—C10—H10B108.4
C3—N2—C9119.94 (13)H10A—C10—H10B107.5
C9—O3—C10113.33 (12)C13—C11—C12126.82 (17)
O1—C1—N1121.37 (15)C13—C11—C10120.77 (15)
O1—C1—C8124.46 (16)C12—C11—C10112.35 (15)
N1—C1—C8114.16 (14)C11—C12—H12A109.5
O2—C2—N1120.90 (14)C11—C12—H12B109.5
O2—C2—N2122.60 (14)H12A—C12—H12B109.5
N1—C2—N2116.49 (14)C11—C12—H12C109.5
C8—C3—N2120.01 (14)H12A—C12—H12C109.5
C8—C3—C4119.13 (15)H12B—C12—H12C109.5
N2—C3—C4120.86 (14)C11—C13—C14128.07 (16)
C5—C4—C3119.85 (15)C11—C13—H13116.0
C5—C4—H4120.1C14—C13—H13116.0
C3—C4—H4120.1C15—C14—C19117.21 (17)
C4—C5—C6120.04 (15)C15—C14—C13123.94 (16)
C4—C5—H5120.0C19—C14—C13118.85 (16)
C6—C5—H5120.0C16—C15—C14121.07 (19)
C7—C6—C5121.20 (16)C16—C15—H15119.5
C7—C6—Cl1120.11 (13)C14—C15—H15119.5
C5—C6—Cl1118.70 (13)C17—C16—C15121.0 (2)
C6—C7—C8118.90 (15)C17—C16—H16119.5
C6—C7—H7120.5C15—C16—H16119.5
C8—C7—H7120.5C16—C17—C18119.32 (19)
C3—C8—C7120.88 (14)C16—C17—H17120.3
C3—C8—C1119.84 (15)C18—C17—H17120.3
C7—C8—C1119.26 (14)C17—C18—C19119.79 (19)
O3—C9—N2112.34 (13)C17—C18—H18120.1
O3—C9—H9A109.1C19—C18—H18120.1
N2—C9—H9A109.1C18—C19—C14121.51 (19)
O3—C9—H9B109.1C18—C19—H19119.2
N2—C9—H9B109.1C14—C19—H19119.2
H9A—C9—H9B107.9
C2—N1—C1—O1175.02 (16)C6—C7—C8—C1178.68 (15)
C2—N1—C1—C84.4 (2)O1—C1—C8—C3173.69 (16)
C1—N1—C2—O2179.73 (15)N1—C1—C8—C35.7 (2)
C1—N1—C2—N20.5 (2)O1—C1—C8—C74.7 (3)
C3—N2—C2—O2176.52 (14)N1—C1—C8—C7175.91 (14)
C9—N2—C2—O23.4 (2)C10—O3—C9—N261.77 (17)
C3—N2—C2—N14.2 (2)C2—N2—C9—O3113.36 (15)
C9—N2—C2—N1175.90 (13)C3—N2—C9—O366.52 (18)
C2—N2—C3—C82.7 (2)C9—O3—C10—C1170.12 (18)
C9—N2—C3—C8177.40 (14)O3—C10—C11—C1328.0 (2)
C2—N2—C3—C4176.78 (15)O3—C10—C11—C12154.74 (14)
C9—N2—C3—C43.1 (2)C12—C11—C13—C141.7 (3)
C8—C3—C4—C50.8 (2)C10—C11—C13—C14175.12 (16)
N2—C3—C4—C5178.76 (15)C11—C13—C14—C1525.9 (3)
C3—C4—C5—C60.4 (3)C11—C13—C14—C19152.81 (18)
C4—C5—C6—C70.2 (3)C19—C14—C15—C164.5 (3)
C4—C5—C6—Cl1179.88 (13)C13—C14—C15—C16174.27 (17)
C5—C6—C7—C80.6 (3)C14—C15—C16—C172.3 (3)
Cl1—C6—C7—C8179.53 (12)C15—C16—C17—C181.0 (3)
N2—C3—C8—C7179.11 (14)C16—C17—C18—C192.0 (3)
C4—C3—C8—C70.4 (2)C17—C18—C19—C140.3 (3)
N2—C3—C8—C12.5 (2)C15—C14—C19—C183.5 (3)
C4—C3—C8—C1178.01 (15)C13—C14—C19—C18175.33 (16)
C6—C7—C8—C30.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.85 (2)2.05 (2)2.8932 (18)168.9 (19)
C4—H4···O1ii0.952.573.382 (2)144
C5—H5···O3iii0.952.573.427 (2)150
C9—H9B···O1ii0.992.383.232 (2)144
C10—H10A···Cg1iv0.992.693.612 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H17ClN2O3
Mr356.80
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6179 (3), 9.8168 (4), 11.7009 (6)
α, β, γ (°)73.937 (4), 83.651 (3), 80.942 (3)
V3)828.31 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.904, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13263, 3817, 3107
Rint0.040
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.04
No. of reflections3817
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.85 (2)2.05 (2)2.8932 (18)168.9 (19)
C4—H4···O1ii0.952.573.382 (2)144
C5—H5···O3iii0.952.573.427 (2)150
C9—H9B···O1ii0.992.383.232 (2)144
C10—H10A···Cg1iv0.992.693.612 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: brollosy@yahoo.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Brollosy, N. R. (2007). J. Chem. Res. pp. 358–361.  Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663–670.  CAS Google Scholar
First citationEl-Brollosy, N. R., Attia, M. I., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1768–o1769.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9–19.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500–4505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1770-o1771
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds