organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1829-o1830

3-Ethenyl-1-(4-methyl­phenyl­sulfon­yl)-1H-indole

aDepartmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: julio@power.ufscar.br

(Received 10 May 2012; accepted 11 May 2012; online 19 May 2012)

Two independent but very similar mol­ecules comprise the asymmetric unit of the title compound, C17H15NO2S. The mol­ecules have L-shapes with the dihedral angles between the fused-ring system (r.m.s. deviations = 0.036 and 0.019 Å, respectively) and the benzene ring being almost the same, i.e. 82.98 (12) and 84.46 (13)°, respectively. The terminal ethenyl group is almost coplanar with the ring to which it is connected [C—C—C—C torsion angles = −173.7 (4) and −171.7 (4)°, respectively]. Supra­molecular arrays parallel to (-124) stabilized by C—H⋯O and C—H⋯π inter­actions feature in the crystal packing.

Related literature

For background to the biological activity of indole­amine 2,3-di­oxy­genase and inhibitors, see: Rohrig et al. (2010[Rohrig, U. F., Awad, L., Grosdidier, A., Larrieu, P., Stroobant, V., Colau, D., Cerundolo, V., Simpson, A. J., Vogel, P., Van den Eynde, B. J., Zoete, V. & Michielin, O. (2010). J. Med. Chem. 53, 1172-1189.]); Munn & Mellor (2007[Munn, D. H. & Mellor, A. L. (2007). J. Clin. Invest. 117, 1147-1154.]); Muller et al. (2005[Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. (2005). Nat. Med. 11, 312-319.]). For related structures, see: Seshadri et al. (2002[Seshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. & Kim, M. J. (2002). Acta Cryst. C58, o700-o703.]); Senthil Kumar et al. (2006[Senthil Kumar, G., Chinnakali, K., Balamurugan, R., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o4972-o4974.]); Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO2S

  • Mr = 297.37

  • Triclinic, [P \overline 1]

  • a = 9.8809 (4) Å

  • b = 10.0167 (3) Å

  • c = 15.5280 (5) Å

  • α = 83.687 (3)°

  • β = 77.864 (3)°

  • γ = 88.769 (3)°

  • V = 1493.41 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero) diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.548, Tmax = 0.641

  • 11566 measured reflections

  • 6103 independent reflections

  • 5505 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.185

  • S = 1.02

  • 6103 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2–C25 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.95 2.50 3.433 (4) 166
C20—H20⋯O2ii 0.95 2.52 3.373 (5) 149
C25—H25⋯O4iii 0.95 2.48 3.406 (4) 166
C30—H30⋯Cg1iv 0.95 2.77 3.617 (4) 149
C34—H34CCg2v 0.98 2.95 3.525 (4) 119
C12—H12⋯Cg3v 0.95 2.87 3.739 (3) 153
C15—H15⋯Cg3v 0.95 2.86 3.638 (3) 140
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (ChemAxon, 2009[ChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indoleamine 2,3-dioxygenase (IDO) is an enzyme that catalyses the degradation of the essential amino acid tryptophan. Elevated tryptophan catabolism mediated by IDO is associated with a wide variety of human cancers and cataract formation (Rohrig et al., 2010). It has also been shown that inhibition of IDO leads to an arrest in tumour growth (Munn & Mellor, 2007; Muller et al., 2005). As part of our on-going research targeted towards the synthesis of α- and β-hydroxy indols as potential IDO inhibitors, the title compound, (I), was synthesized and its crystal structure determined.

There are two independent molecules in the asymmetric unit of (I), Fig. 1, and as seen from the overlay diagram in Fig. 2, these are almost identical with the r.m.s. deviation being 0.1107 Å. The dihedral angles between the fused ring system (r.m.s. deviations = 0.036 and 0.019 Å for the N1- and N2-containing rings, respectively) and the benzene ring are almost the same, i.e. 82.98 (12) and 84.46 (13)°, respectively. The values found in similar structures are of 80.37 (8)° (Chakkaravarthi et al., 2008), 77.41 (5)° (Senthil Kumar et al., 2006) and 66.47 (15) °. (Seshadri et al., 2002). For each molecule, the terminal ethenyl group is almost co-planar to the ring to which it is connected as seen in the values of the C8—C7—C9—C10 and C25—C24—C26—C27 torsion angles of -173.7 (4) and -171.7 (4)°, respectively.

The crystal packing of (I) is sustained by C—H···O and C—H···π interactions, Table 1. These lead to supramolecular arrays parallel to (1 2 4), Fig. 2, which stack with no specific intermolecular interactions between them, Fig. 3.

Related literature top

For background to the biological activity of indoleamine 2,3-dioxygenase and inhibitors, see: Rohrig et al. (2010); Munn & Mellor (2007); Muller et al. (2005). For related structures, see: Seshadri et al. (2002); Senthil Kumar et al. (2006); Chakkaravarthi et al. (2008).

Experimental top

A solution of methyltriphenylphosphonium iodide (0.34 g, 0.84 mmol, 1.4 eq.) in THF (5 ml) at 273 K was poured into a two-necked round-bottomed flask under a nitrogen atmosphere and then under continuous stirring nBuLi (0.36 ml, 0.72 mmol,1.2 eq.) was added drop-wise at 195 K. The mixture was left in a water/ice bath for 20 min, then a solution of 1-tosyl-1-H-indol-carbaldehide (0.181 g) in THF (5 ml) was added. After stirring for another 20 min. the solution was warmed to room temperature and water added. The mixture was extracted with Et2O, washed with NH4Cl and dried under MgSO4. The remaining solvent was removed under reduced pressure. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (yield = 62%). Crystals for X-ray analysis were obtained by slow evaporation from EtOAc held at 293 K; M.pt: 374–375 K.

NMR 1H (CDCl3, 300 MHz, p.p.m.): δ 7.99 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.3 Hz, 1H), 7.59 (s, 1H), 7.34–7.23 (m, 2H), 7.17 (d, J = 8,2 Hz, 2H), 6.75 (dd, J = 17.8 and 11.3 Hz, 1H), 5.78 (d, J = 17.8 Hz, 1H), 5.33 (d, J = 11,3 1H), 2.29 (s, 3H). NMR 13C (CDCl3, 75 MHz, p.p.m.): δ 145.04, 135.55, 135.19, 129.91 (2 C), 129.04, 127.57, 126.85 (2 C), 124.92, 124.09, 123.53, 121.00, 120.43, 115.35, 113.76, 21.54.

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules in (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Overlay diagram for the S1- (red) and S2-containing (blue) molecules aligned so that the N1—S1—C11 and N2—S2—C28 atoms were coincident.
[Figure 3] Fig. 3. A view of the supramolecular array parallel to (1 2 4) in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the a axis of the unit-cell contents of (I) highlighting the stacking of supramolecular layers. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
3-Ethenyl-1-(4-methylphenylsulfonyl)-1H-indole top
Crystal data top
C17H15NO2SZ = 4
Mr = 297.37F(000) = 624
Triclinic, P1Dx = 1.323 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.8809 (4) ÅCell parameters from 5330 reflections
b = 10.0167 (3) Åθ = 2.9–75.8°
c = 15.5280 (5) ŵ = 1.95 mm1
α = 83.687 (3)°T = 100 K
β = 77.864 (3)°Prism, colourless
γ = 88.769 (3)°0.35 × 0.30 × 0.25 mm
V = 1493.41 (9) Å3
Data collection top
Agilent SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
6103 independent reflections
Radiation source: fine-focus sealed tube5505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.4041 pixels mm-1θmax = 76.0°, θmin = 2.9°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1211
Tmin = 0.548, Tmax = 0.641l = 1917
11566 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0942P)2 + 2.0717P]
where P = (Fo2 + 2Fc2)/3
6103 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C17H15NO2Sγ = 88.769 (3)°
Mr = 297.37V = 1493.41 (9) Å3
Triclinic, P1Z = 4
a = 9.8809 (4) ÅCu Kα radiation
b = 10.0167 (3) ŵ = 1.95 mm1
c = 15.5280 (5) ÅT = 100 K
α = 83.687 (3)°0.35 × 0.30 × 0.25 mm
β = 77.864 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
6103 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5505 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.641Rint = 0.019
11566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.02Δρmax = 0.94 e Å3
6103 reflectionsΔρmin = 0.46 e Å3
381 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71402 (8)0.06134 (7)0.57164 (4)0.0379 (2)
S20.89812 (7)0.71152 (6)0.08641 (4)0.03595 (19)
O10.8589 (2)0.0488 (2)0.56504 (14)0.0471 (5)
O20.6524 (3)0.0203 (2)0.50369 (14)0.0542 (6)
O30.9112 (2)0.8520 (2)0.08884 (15)0.0480 (5)
O40.9752 (2)0.6483 (2)0.01369 (14)0.0483 (5)
N10.6393 (3)0.0306 (2)0.66474 (16)0.0382 (5)
N20.9472 (3)0.6333 (3)0.17477 (16)0.0404 (5)
C10.6788 (4)0.0325 (3)0.74573 (19)0.0449 (7)
C20.7995 (4)0.0015 (3)0.7654 (2)0.0493 (7)
H20.87600.03330.72020.059*
C30.8076 (4)0.0119 (4)0.8550 (2)0.0553 (8)
H30.88980.01400.87150.066*
C40.6984 (4)0.0617 (3)0.9187 (2)0.0544 (9)
H40.70900.07560.97840.065*
C50.5724 (4)0.0930 (3)0.8997 (2)0.0559 (9)
H50.49750.12390.94630.067*
C60.5557 (4)0.0792 (3)0.81181 (19)0.0420 (7)
C70.4485 (4)0.0954 (3)0.7646 (2)0.0482 (7)
C80.4978 (4)0.0643 (3)0.6777 (2)0.0464 (7)
H80.44640.06480.63250.056*
C90.3022 (4)0.1397 (3)0.7985 (3)0.0592 (9)
H90.24900.15370.75590.071*
C100.2413 (5)0.1609 (4)0.8818 (3)0.0692 (11)
H10A0.29090.14810.92650.083*
H10B0.14740.18910.89790.083*
C110.6616 (3)0.2251 (3)0.59101 (17)0.0352 (6)
C120.7527 (3)0.3103 (3)0.61593 (18)0.0406 (6)
H120.84340.28130.62040.049*
C130.7080 (4)0.4379 (3)0.6340 (2)0.0471 (7)
H130.76960.49790.64990.057*
C140.5751 (4)0.4798 (3)0.6294 (2)0.0472 (7)
C150.4850 (3)0.3920 (3)0.6042 (2)0.0466 (7)
H150.39380.42040.60060.056*
C160.5281 (3)0.2648 (3)0.58467 (19)0.0410 (6)
H160.46760.20540.56720.049*
C170.5264 (5)0.6181 (3)0.6508 (3)0.0652 (11)
H17A0.57390.64690.69510.098*
H17B0.42630.61610.67450.098*
H17C0.54720.68110.59690.098*
C180.9102 (3)0.6694 (3)0.2611 (2)0.0421 (6)
C190.8755 (3)0.7930 (3)0.2880 (2)0.0485 (7)
H190.86980.86960.24700.058*
C200.8481 (4)0.8009 (4)0.3812 (2)0.0560 (9)
H200.82230.88460.40330.067*
C210.8583 (4)0.6908 (4)0.4390 (2)0.0584 (9)
H210.84020.69980.50070.070*
C220.8945 (4)0.5654 (4)0.4106 (2)0.0507 (8)
H220.90180.48960.45190.061*
C230.9197 (3)0.5538 (3)0.32029 (18)0.0365 (6)
C240.9604 (3)0.4422 (3)0.2660 (2)0.0427 (7)
C250.9723 (3)0.4917 (3)0.18085 (19)0.0414 (6)
H250.99430.44040.13180.050*
C260.9893 (3)0.3026 (3)0.2919 (2)0.0493 (7)
H261.02930.25050.24550.059*
C270.9658 (4)0.2395 (4)0.3737 (2)0.0627 (10)
H27A0.92600.28680.42270.075*
H27B0.98900.14730.38310.075*
C280.7235 (3)0.6688 (3)0.10340 (16)0.0350 (6)
C290.6230 (3)0.7598 (3)0.13615 (18)0.0406 (6)
H290.64830.84470.14980.049*
C300.4852 (3)0.7244 (4)0.14844 (19)0.0475 (7)
H300.41560.78630.17030.057*
C310.4465 (4)0.5999 (4)0.1294 (2)0.0528 (8)
C320.5503 (4)0.5089 (4)0.0993 (2)0.0510 (8)
H320.52530.42240.08820.061*
C330.6889 (3)0.5426 (3)0.08540 (19)0.0428 (7)
H330.75890.48070.06400.051*
C340.2970 (4)0.5637 (6)0.1404 (3)0.0743 (12)
H34A0.28410.46770.16030.111*
H34B0.26860.58380.08360.111*
H34C0.24040.61600.18450.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0481 (4)0.0398 (4)0.0250 (3)0.0088 (3)0.0040 (3)0.0082 (2)
S20.0461 (4)0.0315 (3)0.0261 (3)0.0029 (3)0.0007 (3)0.0015 (2)
O10.0473 (12)0.0503 (12)0.0362 (11)0.0102 (9)0.0053 (9)0.0015 (9)
O20.0745 (16)0.0575 (14)0.0364 (11)0.0124 (12)0.0174 (11)0.0212 (10)
O30.0620 (14)0.0317 (10)0.0446 (12)0.0025 (9)0.0007 (10)0.0017 (8)
O40.0577 (13)0.0453 (12)0.0345 (11)0.0038 (10)0.0089 (9)0.0086 (9)
N10.0436 (13)0.0332 (11)0.0343 (12)0.0008 (9)0.0005 (10)0.0058 (9)
N20.0424 (13)0.0452 (13)0.0315 (12)0.0022 (10)0.0054 (10)0.0004 (10)
C10.072 (2)0.0307 (13)0.0294 (14)0.0035 (13)0.0069 (13)0.0019 (11)
C20.0564 (19)0.0441 (16)0.0438 (17)0.0082 (14)0.0053 (14)0.0005 (13)
C30.067 (2)0.0507 (19)0.0508 (19)0.0103 (16)0.0198 (17)0.0053 (15)
C40.081 (3)0.0498 (18)0.0329 (15)0.0047 (17)0.0178 (16)0.0056 (13)
C50.080 (3)0.0447 (17)0.0365 (16)0.0042 (16)0.0017 (16)0.0019 (13)
C60.0633 (19)0.0284 (13)0.0318 (14)0.0089 (12)0.0043 (13)0.0045 (10)
C70.063 (2)0.0314 (14)0.0487 (17)0.0036 (13)0.0063 (15)0.0068 (12)
C80.0548 (18)0.0334 (14)0.0509 (18)0.0014 (13)0.0091 (14)0.0075 (12)
C90.055 (2)0.0377 (16)0.077 (3)0.0096 (14)0.0078 (18)0.0125 (16)
C100.078 (3)0.054 (2)0.071 (3)0.0040 (19)0.003 (2)0.0106 (19)
C110.0450 (15)0.0355 (13)0.0231 (12)0.0059 (11)0.0041 (10)0.0011 (10)
C120.0457 (16)0.0435 (15)0.0306 (13)0.0015 (12)0.0054 (11)0.0006 (11)
C130.064 (2)0.0373 (15)0.0389 (15)0.0025 (14)0.0102 (14)0.0016 (12)
C140.068 (2)0.0361 (15)0.0346 (15)0.0087 (14)0.0058 (14)0.0015 (11)
C150.0489 (17)0.0452 (16)0.0424 (16)0.0120 (13)0.0062 (13)0.0014 (13)
C160.0464 (16)0.0416 (15)0.0338 (14)0.0045 (12)0.0078 (12)0.0009 (11)
C170.097 (3)0.0376 (17)0.058 (2)0.0162 (18)0.011 (2)0.0059 (15)
C180.0384 (15)0.0517 (17)0.0356 (14)0.0015 (12)0.0042 (11)0.0082 (12)
C190.0467 (17)0.0479 (17)0.0505 (18)0.0021 (13)0.0081 (14)0.0068 (14)
C200.0501 (19)0.059 (2)0.059 (2)0.0021 (15)0.0004 (15)0.0293 (17)
C210.053 (2)0.087 (3)0.0372 (17)0.0017 (18)0.0054 (14)0.0227 (17)
C220.0513 (18)0.064 (2)0.0368 (16)0.0004 (15)0.0078 (13)0.0070 (14)
C230.0302 (13)0.0460 (15)0.0336 (13)0.0001 (11)0.0072 (10)0.0049 (11)
C240.0399 (15)0.0474 (17)0.0406 (15)0.0024 (12)0.0079 (12)0.0049 (12)
C250.0382 (15)0.0496 (17)0.0374 (15)0.0048 (12)0.0064 (12)0.0136 (12)
C260.0469 (17)0.0443 (17)0.0538 (18)0.0081 (13)0.0037 (14)0.0069 (14)
C270.075 (3)0.061 (2)0.0469 (19)0.0113 (19)0.0055 (17)0.0011 (16)
C280.0449 (15)0.0355 (13)0.0229 (11)0.0054 (11)0.0057 (10)0.0003 (10)
C290.0536 (17)0.0387 (14)0.0263 (13)0.0097 (12)0.0037 (11)0.0006 (10)
C300.0484 (17)0.062 (2)0.0298 (14)0.0139 (15)0.0043 (12)0.0055 (13)
C310.0482 (18)0.079 (2)0.0324 (15)0.0026 (16)0.0108 (13)0.0078 (15)
C320.0564 (19)0.0563 (19)0.0450 (17)0.0009 (15)0.0182 (15)0.0112 (14)
C330.0543 (18)0.0417 (15)0.0350 (14)0.0074 (13)0.0134 (12)0.0079 (12)
C340.050 (2)0.121 (4)0.057 (2)0.003 (2)0.0131 (17)0.028 (2)
Geometric parameters (Å, º) top
S1—O11.418 (2)C15—C161.381 (4)
S1—O21.424 (2)C15—H150.9500
S1—N11.664 (2)C16—H160.9500
S1—C111.748 (3)C17—H17A0.9800
S2—O31.421 (2)C17—H17B0.9800
S2—O41.425 (2)C17—H17C0.9800
S2—N21.661 (2)C18—C191.364 (5)
S2—C281.745 (3)C18—C231.412 (4)
N1—C11.391 (4)C19—C201.426 (5)
N1—C81.413 (4)C19—H190.9500
N2—C181.398 (4)C20—C211.360 (6)
N2—C251.431 (4)C20—H200.9500
C1—C21.351 (5)C21—C221.392 (5)
C1—C61.464 (4)C21—H210.9500
C2—C31.403 (5)C22—C231.389 (4)
C2—H20.9500C22—H220.9500
C3—C41.363 (5)C23—C241.473 (4)
C3—H30.9500C24—C251.341 (4)
C4—C51.388 (6)C24—C261.451 (4)
C4—H40.9500C25—H250.9500
C5—C61.401 (4)C26—C271.331 (5)
C5—H50.9500C26—H260.9500
C6—C71.431 (5)C27—H27A0.9500
C7—C81.339 (5)C27—H27B0.9500
C7—C91.490 (5)C28—C291.388 (4)
C8—H80.9500C28—C331.390 (4)
C9—C101.304 (6)C29—C301.383 (5)
C9—H90.9500C29—H290.9500
C10—H10A0.9500C30—C311.392 (5)
C10—H10B0.9500C30—H300.9500
C11—C161.390 (4)C31—C321.398 (5)
C11—C121.392 (4)C31—C341.499 (5)
C12—C131.382 (4)C32—C331.384 (5)
C12—H120.9500C32—H320.9500
C13—C141.384 (5)C33—H330.9500
C13—H130.9500C34—H34A0.9800
C14—C151.406 (5)C34—H34B0.9800
C14—C171.505 (4)C34—H34C0.9800
O1—S1—O2119.94 (14)C15—C16—C11118.7 (3)
O1—S1—N1106.60 (13)C15—C16—H16120.6
O2—S1—N1106.14 (14)C11—C16—H16120.6
O1—S1—C11110.00 (14)C14—C17—H17A109.5
O2—S1—C11109.24 (14)C14—C17—H17B109.5
N1—S1—C11103.58 (12)H17A—C17—H17B109.5
O3—S2—O4120.11 (13)C14—C17—H17C109.5
O3—S2—N2107.90 (14)H17A—C17—H17C109.5
O4—S2—N2104.62 (13)H17B—C17—H17C109.5
O3—S2—C28109.69 (14)C19—C18—N2128.6 (3)
O4—S2—C28109.70 (14)C19—C18—C23123.3 (3)
N2—S2—C28103.42 (12)N2—C18—C23108.0 (3)
C1—N1—C8110.5 (3)C18—C19—C20116.2 (3)
C1—N1—S1125.2 (2)C18—C19—H19121.9
C8—N1—S1118.9 (2)C20—C19—H19121.9
C18—N2—C25107.6 (2)C21—C20—C19121.2 (3)
C18—N2—S2125.8 (2)C21—C20—H20119.4
C25—N2—S2120.4 (2)C19—C20—H20119.4
C2—C1—N1131.0 (3)C20—C21—C22121.9 (3)
C2—C1—C6124.3 (3)C20—C21—H21119.0
N1—C1—C6104.7 (3)C22—C21—H21119.0
C1—C2—C3117.4 (3)C23—C22—C21118.4 (3)
C1—C2—H2121.3C23—C22—H22120.8
C3—C2—H2121.3C21—C22—H22120.8
C4—C3—C2120.4 (4)C22—C23—C18119.0 (3)
C4—C3—H3119.8C22—C23—C24134.2 (3)
C2—C3—H3119.8C18—C23—C24106.8 (2)
C3—C4—C5122.6 (3)C25—C24—C26122.2 (3)
C3—C4—H4118.7C25—C24—C23107.5 (3)
C5—C4—H4118.7C26—C24—C23130.3 (3)
C4—C5—C6120.0 (3)C24—C25—N2110.0 (3)
C4—C5—H5120.0C24—C25—H25125.0
C6—C5—H5120.0N2—C25—H25125.0
C5—C6—C7138.2 (3)C27—C26—C24127.1 (3)
C5—C6—C1115.0 (3)C27—C26—H26116.4
C7—C6—C1106.8 (3)C24—C26—H26116.4
C8—C7—C6109.5 (3)C26—C27—H27A120.0
C8—C7—C9120.7 (3)C26—C27—H27B120.0
C6—C7—C9129.8 (3)H27A—C27—H27B120.0
C7—C8—N1108.4 (3)C29—C28—C33121.6 (3)
C7—C8—H8125.8C29—C28—S2119.6 (2)
N1—C8—H8125.8C33—C28—S2118.8 (2)
C10—C9—C7125.3 (4)C30—C29—C28118.7 (3)
C10—C9—H9117.4C30—C29—H29120.7
C7—C9—H9117.4C28—C29—H29120.7
C9—C10—H10A120.0C29—C30—C31121.3 (3)
C9—C10—H10B120.0C29—C30—H30119.4
H10A—C10—H10B120.0C31—C30—H30119.4
C16—C11—C12121.9 (3)C30—C31—C32118.5 (3)
C16—C11—S1118.9 (2)C30—C31—C34121.0 (3)
C12—C11—S1119.1 (2)C32—C31—C34120.4 (4)
C13—C12—C11118.4 (3)C33—C32—C31121.2 (3)
C13—C12—H12120.8C33—C32—H32119.4
C11—C12—H12120.8C31—C32—H32119.4
C12—C13—C14121.1 (3)C32—C33—C28118.6 (3)
C12—C13—H13119.4C32—C33—H33120.7
C14—C13—H13119.4C28—C33—H33120.7
C13—C14—C15119.4 (3)C31—C34—H34A109.5
C13—C14—C17120.8 (3)C31—C34—H34B109.5
C15—C14—C17119.8 (3)H34A—C34—H34B109.5
C16—C15—C14120.4 (3)C31—C34—H34C109.5
C16—C15—H15119.8H34A—C34—H34C109.5
C14—C15—H15119.8H34B—C34—H34C109.5
O1—S1—N1—C144.2 (3)C12—C13—C14—C17178.9 (3)
O2—S1—N1—C1173.1 (2)C13—C14—C15—C160.4 (5)
C11—S1—N1—C171.9 (3)C17—C14—C15—C16179.8 (3)
O1—S1—N1—C8164.4 (2)C14—C15—C16—C110.4 (4)
O2—S1—N1—C835.4 (2)C12—C11—C16—C150.4 (4)
C11—S1—N1—C879.6 (2)S1—C11—C16—C15176.9 (2)
O3—S2—N2—C1844.1 (3)C25—N2—C18—C19179.2 (3)
O4—S2—N2—C18173.1 (2)S2—N2—C18—C1927.2 (5)
C28—S2—N2—C1872.1 (3)C25—N2—C18—C233.3 (3)
O3—S2—N2—C25167.1 (2)S2—N2—C18—C23155.4 (2)
O4—S2—N2—C2538.1 (3)N2—C18—C19—C20177.3 (3)
C28—S2—N2—C2576.7 (2)C23—C18—C19—C200.1 (5)
C8—N1—C1—C2174.9 (3)C18—C19—C20—C210.8 (5)
S1—N1—C1—C221.4 (5)C19—C20—C21—C220.6 (6)
C8—N1—C1—C63.9 (3)C20—C21—C22—C230.4 (5)
S1—N1—C1—C6157.4 (2)C21—C22—C23—C181.1 (5)
N1—C1—C2—C3179.9 (3)C21—C22—C23—C24179.4 (3)
C6—C1—C2—C31.5 (5)C19—C18—C23—C220.8 (5)
C1—C2—C3—C42.1 (5)N2—C18—C23—C22176.8 (3)
C2—C3—C4—C54.3 (5)C19—C18—C23—C24179.5 (3)
C3—C4—C5—C62.8 (5)N2—C18—C23—C241.9 (3)
C4—C5—C6—C7177.8 (3)C22—C23—C24—C25178.7 (3)
C4—C5—C6—C10.7 (4)C18—C23—C24—C250.3 (3)
C2—C1—C6—C52.9 (4)C22—C23—C24—C260.7 (6)
N1—C1—C6—C5178.2 (3)C18—C23—C24—C26177.7 (3)
C2—C1—C6—C7176.1 (3)C26—C24—C25—N2175.9 (3)
N1—C1—C6—C72.8 (3)C23—C24—C25—N22.4 (3)
C5—C6—C7—C8179.3 (4)C18—N2—C25—C243.6 (3)
C1—C6—C7—C80.7 (3)S2—N2—C25—C24157.5 (2)
C5—C6—C7—C91.0 (6)C25—C24—C26—C27171.7 (4)
C1—C6—C7—C9179.6 (3)C23—C24—C26—C2710.5 (6)
C6—C7—C8—N11.7 (3)O3—S2—C28—C2914.6 (3)
C9—C7—C8—N1178.0 (3)O4—S2—C28—C29148.5 (2)
C1—N1—C8—C73.7 (3)N2—S2—C28—C29100.3 (2)
S1—N1—C8—C7159.0 (2)O3—S2—C28—C33166.8 (2)
C8—C7—C9—C10173.7 (4)O4—S2—C28—C3332.8 (3)
C6—C7—C9—C106.6 (6)N2—S2—C28—C3378.4 (2)
O1—S1—C11—C16169.2 (2)C33—C28—C29—C301.9 (4)
O2—S1—C11—C1635.6 (3)S2—C28—C29—C30179.5 (2)
N1—S1—C11—C1677.2 (2)C28—C29—C30—C310.6 (4)
O1—S1—C11—C1213.5 (3)C29—C30—C31—C321.5 (5)
O2—S1—C11—C12147.1 (2)C29—C30—C31—C34178.2 (3)
N1—S1—C11—C12100.1 (2)C30—C31—C32—C332.3 (5)
C16—C11—C12—C130.5 (4)C34—C31—C32—C33177.4 (3)
S1—C11—C12—C13177.8 (2)C31—C32—C33—C281.0 (5)
C11—C12—C13—C141.3 (4)C29—C28—C33—C321.1 (4)
C12—C13—C14—C151.3 (5)S2—C28—C33—C32179.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2–C25 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.952.503.433 (4)166
C20—H20···O2ii0.952.523.373 (5)149
C25—H25···O4iii0.952.483.406 (4)166
C30—H30···Cg1iv0.952.773.617 (4)149
C34—H34C···Cg2v0.982.953.525 (4)119
C12—H12···Cg3v0.952.873.739 (3)153
C15—H15···Cg3v0.952.863.638 (3)140
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H15NO2S
Mr297.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8809 (4), 10.0167 (3), 15.5280 (5)
α, β, γ (°)83.687 (3), 77.864 (3), 88.769 (3)
V3)1493.41 (9)
Z4
Radiation typeCu Kα
µ (mm1)1.95
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.548, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
11566, 6103, 5505
Rint0.019
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.185, 1.02
No. of reflections6103
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.46

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2–C25 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.952.503.433 (4)166
C20—H20···O2ii0.952.523.373 (5)149
C25—H25···O4iii0.952.483.406 (4)166
C30—H30···Cg1iv0.952.773.617 (4)149
C34—H34C···Cg2v0.982.953.525 (4)119
C12—H12···Cg3v0.952.873.739 (3)153
C15—H15···Cg3v0.952.863.638 (3)140
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z.
 

Acknowledgements

We thank the Brazilian agencies: FAPESP (07/59404–2 to HAS), CNPq (300613/2007–5 to HAS and 306532/2009–3 to JZS) and CAPES (808/2009 to JZS) for financial support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. (2005). Nat. Med. 11, 312–319.  CrossRef PubMed CAS Google Scholar
First citationMunn, D. H. & Mellor, A. L. (2007). J. Clin. Invest. 117, 1147–1154.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRohrig, U. F., Awad, L., Grosdidier, A., Larrieu, P., Stroobant, V., Colau, D., Cerundolo, V., Simpson, A. J., Vogel, P., Van den Eynde, B. J., Zoete, V. & Michielin, O. (2010). J. Med. Chem. 53, 1172–1189.  Web of Science CAS PubMed Google Scholar
First citationSenthil Kumar, G., Chinnakali, K., Balamurugan, R., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o4972–o4974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. & Kim, M. J. (2002). Acta Cryst. C58, o700–o703.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1829-o1830
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds