organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O-Propyl N-phenyl­thio­carbamate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand 90110, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 May 2012; accepted 11 May 2012; online 19 May 2012)

Two independent mol­ecules comprise the asymmetric unit in the title thio­carbamide derivative, C10H13NOS. These differ in the relative orientations of terminal ethyl groups [C—C—C—O torsion angles = −66.95 (13) and 55.92 (13)°, respectively]. The phenyl ring is twisted out of the plane of the central residue [Cq—N—Cph—Cph = −146.20 (12) and −144.15 (12)°, respectively; q = quaternary and ph = phen­yl]. The independent mol­ecules are linked into a dimeric aggregate by N—H⋯S hydrogen bonds and an eight-membered thio­amide {⋯H—N—C=S}2 synthon.

Related literature

For related thio­carbamaide structures, see: Ho et al. (2005[Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682-689.]); Kuan et al. (2007[Kuan, F. S., Mohr, F., Tadbuppa, P. P. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 574-581.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NOS

  • Mr = 195.27

  • Triclinic, [P \overline 1]

  • a = 8.9230 (4) Å

  • b = 9.8752 (4) Å

  • c = 12.9613 (5) Å

  • α = 98.037 (3)°

  • β = 105.866 (4)°

  • γ = 104.533 (4)°

  • V = 1036.46 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.45 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.772, Tmax = 1.000

  • 7531 measured reflections

  • 4249 independent reflections

  • 4049 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.04

  • 4249 reflections

  • 243 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯S2 0.88 (1) 2.51 (1) 3.3667 (10) 164 (2)
N2—H2n⋯S1 0.88 (1) 2.52 (1) 3.3765 (10) 167 (2)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title thiocarbamate, (I), was investigated as a continuation of systematic evaluation of the structural features of this class of compound (Ho et al., 2005; Kuan et al., 2007). In (I), Fig. 1, two independent molecules comprise the asymmetric unit, and these have very similar molecular conformations as seen in the overlay diagram, Fig. 2. The difference arises in the pseudo mirror relationship in the terminal ethyl group as seen in the C1—C2—C3—O1 and C11—C12—C13—O2 torsion angles of -66.95 (13) and 55.92 (13)°, respectively. A further twist is evident in the molecule as seen in the value of the C4—N1—C5—C6 torsion angle of -146.20 (12)°; the equivalent torsion angle for the second independent molecule [C14—N2—C15—C16] is -144.15 (12)°. The geometric parameters match literature precedents (Ho et al., 2005; Kuan et al., 2007)

The independent molecules are linked into a dimeric aggregate by N—H···S hydrogen bonds and an eight-membered thioamide {···H—N—C=S}2 synthon, Table 1, as found in most thiocarbamate structures (Kuan et al., 2007). Molecules assemble into a three-dimensional architecture with no specific interactions between them.

Related literature top

For related thiocarbamaide structures, see: Ho et al. (2005); Kuan et al. (2007).

Experimental top

Phenyl isothiocyanate (2 ml) was added drop-wise to a stirred solution of NaOH (1 mol equiv.) in n-propanol (20 ml) and stirred for 3 h. Excess HCl (5M) was then added and the solution was stirred for a further 1 h. The product was then extracted with CHCl3 and left for evaporation at room temperature, yielding colourless crystals after 2 weeks. IR (KBr, cm-1): ν(N—H) 3211 (br); ν(C—N) 1410 (s); ν(CS) 1221 (s); ν(C—O) 1060 (s). 1H NMR (CDCl3, p.p.m.): δ 1.00 (t, J = 7.44 Hz, 3H, CH3), 1.80 (sextet, J = 7.06 Hz, 2H, CH2), 4.54 (br, 2H, CH2O), 7.16 – 7.35 (br, m, 5H aryl-H), 8.85 (br, 1H NH). M.pt: 311–312 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino-H atoms were refined with the distance restraint N—H = 0.88±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The dashed lines represent N—H hydrogen bonds.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules comprising the asymmetric unit of (I). The first independent molecule (with the S1 atom) is shown in red and the second (S2) in blue. The S, O and N atoms in each molecule have been overlapped.
O-Propyl N-phenylthiocarbamate top
Crystal data top
C10H13NOSZ = 4
Mr = 195.27F(000) = 416
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 8.9230 (4) ÅCell parameters from 5287 reflections
b = 9.8752 (4) Åθ = 4.7–76.4°
c = 12.9613 (5) ŵ = 2.45 mm1
α = 98.037 (3)°T = 100 K
β = 105.866 (4)°Prism, colourless
γ = 104.533 (4)°0.35 × 0.30 × 0.25 mm
V = 1036.46 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4249 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4049 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.8°
ω scanh = 711
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1112
Tmin = 0.772, Tmax = 1.000l = 1516
7531 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.325P]
where P = (Fo2 + 2Fc2)/3
4249 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H13NOSγ = 104.533 (4)°
Mr = 195.27V = 1036.46 (7) Å3
Triclinic, P1Z = 4
a = 8.9230 (4) ÅCu Kα radiation
b = 9.8752 (4) ŵ = 2.45 mm1
c = 12.9613 (5) ÅT = 100 K
α = 98.037 (3)°0.35 × 0.30 × 0.25 mm
β = 105.866 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4249 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4049 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 1.000Rint = 0.014
7531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
4249 reflectionsΔρmin = 0.26 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71820 (3)0.96137 (3)0.53434 (2)0.01838 (9)
S20.28880 (3)0.57145 (3)0.43767 (2)0.01822 (9)
O10.69183 (10)1.01848 (8)0.33618 (6)0.01621 (17)
O20.32823 (10)0.50276 (9)0.63279 (7)0.01760 (18)
N10.50067 (12)0.82607 (11)0.33959 (8)0.0170 (2)
N20.51265 (12)0.70040 (10)0.63170 (8)0.0163 (2)
C10.92887 (18)1.12337 (16)0.22198 (11)0.0293 (3)
H1A0.94951.17440.16520.044*
H1B0.84241.03190.18720.044*
H1C1.02921.10510.26260.044*
C20.87524 (15)1.21464 (13)0.30110 (10)0.0208 (2)
H2A0.96311.30680.33590.025*
H2B0.77691.23640.25900.025*
C30.83708 (14)1.14212 (12)0.38999 (10)0.0178 (2)
H3A0.93021.11070.42830.021*
H3B0.81611.20920.44470.021*
C40.63469 (13)0.93553 (12)0.39794 (9)0.0152 (2)
C50.41567 (14)0.78782 (12)0.22442 (9)0.0152 (2)
C60.24671 (14)0.72731 (12)0.19297 (10)0.0176 (2)
H60.19420.71840.24740.021*
C70.15509 (14)0.68008 (13)0.08232 (10)0.0199 (2)
H70.04000.63780.06120.024*
C80.23078 (15)0.69437 (13)0.00225 (10)0.0203 (2)
H80.16780.66310.07350.024*
C90.39904 (15)0.75463 (14)0.03377 (10)0.0219 (2)
H90.45110.76420.02090.026*
C100.49257 (14)0.80118 (13)0.14456 (10)0.0197 (2)
H100.60790.84170.16550.024*
C110.15346 (15)0.40071 (14)0.77344 (10)0.0239 (3)
H11A0.14010.34340.82810.036*
H11B0.06300.44180.75460.036*
H11C0.25730.47820.80400.036*
C120.15342 (15)0.30544 (13)0.67048 (10)0.0197 (2)
H12A0.24210.26100.69080.024*
H12B0.04840.22720.64040.024*
C130.17672 (14)0.38556 (12)0.58226 (9)0.0184 (2)
H13A0.18410.32130.51920.022*
H13B0.08380.42330.55550.022*
C140.38000 (14)0.59088 (12)0.57262 (9)0.0152 (2)
C150.60105 (13)0.72986 (12)0.74636 (9)0.0151 (2)
C160.66568 (14)0.87358 (12)0.80113 (10)0.0183 (2)
H160.64530.94590.76300.022*
C170.76006 (15)0.91136 (13)0.91153 (10)0.0203 (2)
H170.80491.00960.94870.024*
C180.78895 (14)0.80571 (13)0.96760 (10)0.0204 (2)
H180.85310.83131.04320.025*
C190.72344 (14)0.66214 (13)0.91244 (10)0.0201 (2)
H190.74240.58980.95090.024*
C200.63053 (14)0.62339 (12)0.80164 (10)0.0180 (2)
H200.58770.52530.76410.022*
H1n0.452 (2)0.7739 (17)0.3777 (13)0.033 (4)*
H2n0.5510 (19)0.7633 (15)0.5966 (12)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01728 (14)0.02170 (15)0.01217 (14)0.00052 (11)0.00352 (11)0.00349 (11)
S20.01900 (15)0.02037 (15)0.01232 (14)0.00178 (11)0.00402 (11)0.00404 (11)
O10.0153 (4)0.0165 (4)0.0133 (4)0.0003 (3)0.0035 (3)0.0025 (3)
O20.0161 (4)0.0186 (4)0.0134 (4)0.0014 (3)0.0034 (3)0.0037 (3)
N10.0150 (4)0.0206 (5)0.0132 (5)0.0010 (4)0.0050 (4)0.0042 (4)
N20.0173 (5)0.0166 (5)0.0138 (5)0.0023 (4)0.0046 (4)0.0051 (4)
C10.0328 (7)0.0362 (7)0.0263 (7)0.0113 (6)0.0175 (6)0.0128 (6)
C20.0217 (6)0.0192 (5)0.0188 (6)0.0016 (4)0.0056 (5)0.0065 (5)
C30.0173 (5)0.0159 (5)0.0151 (5)0.0012 (4)0.0037 (4)0.0012 (4)
C40.0134 (5)0.0178 (5)0.0157 (5)0.0056 (4)0.0060 (4)0.0034 (4)
C50.0167 (5)0.0143 (5)0.0133 (5)0.0044 (4)0.0037 (4)0.0023 (4)
C60.0165 (5)0.0176 (5)0.0178 (6)0.0040 (4)0.0056 (4)0.0032 (4)
C70.0152 (5)0.0198 (6)0.0206 (6)0.0041 (4)0.0019 (4)0.0019 (4)
C80.0237 (6)0.0195 (5)0.0143 (5)0.0072 (5)0.0015 (4)0.0010 (4)
C90.0242 (6)0.0256 (6)0.0158 (6)0.0067 (5)0.0082 (5)0.0026 (5)
C100.0161 (5)0.0236 (6)0.0168 (6)0.0028 (4)0.0055 (4)0.0015 (4)
C110.0232 (6)0.0278 (6)0.0193 (6)0.0025 (5)0.0103 (5)0.0042 (5)
C120.0211 (6)0.0178 (5)0.0186 (6)0.0021 (4)0.0068 (5)0.0051 (4)
C130.0169 (5)0.0177 (5)0.0146 (5)0.0017 (4)0.0028 (4)0.0017 (4)
C140.0155 (5)0.0164 (5)0.0154 (5)0.0059 (4)0.0068 (4)0.0037 (4)
C150.0128 (5)0.0183 (5)0.0138 (5)0.0039 (4)0.0046 (4)0.0032 (4)
C160.0195 (5)0.0163 (5)0.0194 (6)0.0054 (4)0.0061 (5)0.0046 (4)
C170.0219 (6)0.0162 (5)0.0197 (6)0.0040 (4)0.0054 (5)0.0003 (4)
C180.0193 (6)0.0243 (6)0.0152 (5)0.0057 (5)0.0035 (4)0.0024 (5)
C190.0201 (5)0.0207 (6)0.0188 (6)0.0071 (4)0.0036 (5)0.0063 (5)
C200.0179 (5)0.0152 (5)0.0188 (6)0.0046 (4)0.0037 (4)0.0025 (4)
Geometric parameters (Å, º) top
S1—C41.6745 (12)C7—H70.9500
S2—C141.6758 (12)C8—C91.3869 (17)
O1—C41.3298 (14)C8—H80.9500
O1—C31.4596 (13)C9—C101.3920 (16)
O2—C141.3280 (14)C9—H90.9500
O2—C131.4543 (13)C10—H100.9500
N1—C41.3412 (15)C11—C121.5213 (17)
N1—C51.4233 (14)C11—H11A0.9800
N1—H1n0.881 (9)C11—H11B0.9800
N2—C141.3370 (15)C11—H11C0.9800
N2—C151.4277 (15)C12—C131.5090 (16)
N2—H2n0.876 (9)C12—H12A0.9900
C1—C21.5230 (18)C12—H12B0.9900
C1—H1A0.9800C13—H13A0.9900
C1—H1B0.9800C13—H13B0.9900
C1—H1C0.9800C15—C201.3908 (16)
C2—C31.5096 (16)C15—C161.3909 (16)
C2—H2A0.9900C16—C171.3893 (17)
C2—H2B0.9900C16—H160.9500
C3—H3A0.9900C17—C181.3884 (17)
C3—H3B0.9900C17—H170.9500
C5—C101.3931 (16)C18—C191.3910 (17)
C5—C61.3928 (16)C18—H180.9500
C6—C71.3868 (16)C19—C201.3901 (16)
C6—H60.9500C19—H190.9500
C7—C81.3891 (18)C20—H200.9500
C4—O1—C3118.40 (9)C10—C9—H9119.6
C14—O2—C13119.24 (9)C9—C10—C5119.44 (11)
C4—N1—C5129.52 (10)C9—C10—H10120.3
C4—N1—H1n116.3 (11)C5—C10—H10120.3
C5—N1—H1n113.9 (12)C12—C11—H11A109.5
C14—N2—C15128.33 (10)C12—C11—H11B109.5
C14—N2—H2n116.9 (11)H11A—C11—H11B109.5
C15—N2—H2n114.8 (11)C12—C11—H11C109.5
C2—C1—H1A109.5H11A—C11—H11C109.5
C2—C1—H1B109.5H11B—C11—H11C109.5
H1A—C1—H1B109.5C13—C12—C11113.18 (10)
C2—C1—H1C109.5C13—C12—H12A108.9
H1A—C1—H1C109.5C11—C12—H12A108.9
H1B—C1—H1C109.5C13—C12—H12B108.9
C3—C2—C1112.87 (11)C11—C12—H12B108.9
C3—C2—H2A109.0H12A—C12—H12B107.8
C1—C2—H2A109.0O2—C13—C12106.33 (9)
C3—C2—H2B109.0O2—C13—H13A110.5
C1—C2—H2B109.0C12—C13—H13A110.5
H2A—C2—H2B107.8O2—C13—H13B110.5
O1—C3—C2107.03 (9)C12—C13—H13B110.5
O1—C3—H3A110.3H13A—C13—H13B108.7
C2—C3—H3A110.3O2—C14—N2112.77 (10)
O1—C3—H3B110.3O2—C14—S2124.50 (9)
C2—C3—H3B110.3N2—C14—S2122.71 (9)
H3A—C3—H3B108.6C20—C15—C16120.28 (11)
O1—C4—N1112.98 (10)C20—C15—N2123.06 (10)
O1—C4—S1124.75 (8)C16—C15—N2116.58 (10)
N1—C4—S1122.27 (9)C17—C16—C15120.03 (11)
C10—C5—C6119.92 (11)C17—C16—H16120.0
C10—C5—N1123.81 (10)C15—C16—H16120.0
C6—C5—N1116.20 (10)C16—C17—C18120.08 (11)
C7—C6—C5120.09 (11)C16—C17—H17120.0
C7—C6—H6120.0C18—C17—H17120.0
C5—C6—H6120.0C17—C18—C19119.60 (11)
C6—C7—C8120.30 (11)C17—C18—H18120.2
C6—C7—H7119.9C19—C18—H18120.2
C8—C7—H7119.9C20—C19—C18120.74 (11)
C9—C8—C7119.50 (11)C20—C19—H19119.6
C9—C8—H8120.2C18—C19—H19119.6
C7—C8—H8120.2C19—C20—C15119.27 (11)
C8—C9—C10120.75 (11)C19—C20—H20120.4
C8—C9—H9119.6C15—C20—H20120.4
C4—O1—C3—C2179.25 (10)C14—O2—C13—C12179.29 (10)
C1—C2—C3—O166.95 (13)C11—C12—C13—O255.92 (13)
C3—O1—C4—N1179.65 (9)C13—O2—C14—N2174.58 (9)
C3—O1—C4—S10.49 (14)C13—O2—C14—S24.13 (15)
C5—N1—C4—O10.59 (17)C15—N2—C14—O20.88 (17)
C5—N1—C4—S1179.27 (9)C15—N2—C14—S2179.63 (9)
C4—N1—C5—C1037.09 (18)C14—N2—C15—C2039.15 (18)
C4—N1—C5—C6146.20 (12)C14—N2—C15—C16144.15 (12)
C10—C5—C6—C70.15 (17)C20—C15—C16—C170.04 (17)
N1—C5—C6—C7176.70 (10)N2—C15—C16—C17176.84 (10)
C5—C6—C7—C80.78 (18)C15—C16—C17—C180.51 (18)
C6—C7—C8—C90.79 (18)C16—C17—C18—C190.26 (18)
C7—C8—C9—C100.17 (19)C17—C18—C19—C200.53 (18)
C8—C9—C10—C50.46 (19)C18—C19—C20—C151.07 (18)
C6—C5—C10—C90.47 (18)C16—C15—C20—C190.82 (17)
N1—C5—C10—C9177.06 (11)N2—C15—C20—C19177.41 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S20.88 (1)2.51 (1)3.3667 (10)164 (2)
N2—H2n···S10.88 (1)2.52 (1)3.3765 (10)167 (2)

Experimental details

Crystal data
Chemical formulaC10H13NOS
Mr195.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.9230 (4), 9.8752 (4), 12.9613 (5)
α, β, γ (°)98.037 (3), 105.866 (4), 104.533 (4)
V3)1036.46 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.45
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.772, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7531, 4249, 4049
Rint0.014
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.04
No. of reflections4249
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S20.881 (9)2.511 (10)3.3667 (10)163.8 (15)
N2—H2n···S10.876 (9)2.518 (10)3.3765 (10)166.9 (15)
 

Acknowledgements

PS thanks the Development and Promotion of Science and Technology Talents Project (DPST), Thailand, for support to enable study at the University of Malaya. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHo, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Mohr, F., Tadbuppa, P. P. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 574–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds