metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m779-m780

Bis(2,S-di­methyl­di­thio­carbazate-κ2N3,S)(nitrato-κO)copper(II) nitrate

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 May 2012; accepted 11 May 2012; online 19 May 2012)

The title complex, [Cu(NO3)(C3H8N2S2)2]NO3, represents a low-symmetry polymorph (P-1, Z = 4) of a previously reported form [P-1, Z = 2; Ali et al. (2011[Ali, M. A., Mirza, A. H., Yee, C. Y., Rahgeni, H. & Bernhardt, P. V. (2011). Polyhedron, 30, 542-548.]). Polyhedron, 30, 542–548]. The CuII atom in each independent cation is found within a distorted square-pyramidal N2S2O coordination geometry defined by two N,S-bidentate ligands and an O atom derived from a monodentate nitrate. The primary difference between the cations is found in the relative orientations of the coordinated nitrate groups, which are directed to opposite sides of the mol­ecule. Supra­molecular layers along [110] and sustained by N—H⋯O inter­actions feature in the crystal packing. These are connected along the c axis by C—H⋯O inter­actions.

Related literature

For related dithio­carbazate compounds, see: Hazari et al. (2012[Hazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216.]). For the previously reported polymorph, see: Ali et al. (2011[Ali, M. A., Mirza, A. H., Yee, C. Y., Rahgeni, H. & Bernhardt, P. V. (2011). Polyhedron, 30, 542-548.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)(C3H8N2S2)2]NO3

  • Mr = 460.03

  • Triclinic, [P \overline 1]

  • a = 11.2716 (4) Å

  • b = 12.1741 (4) Å

  • c = 13.8970 (5) Å

  • α = 115.449 (3)°

  • β = 100.734 (3)°

  • γ = 97.258 (3)°

  • V = 1645.39 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.634, Tmax = 1.000

  • 25371 measured reflections

  • 7555 independent reflections

  • 5675 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.165

  • S = 1.09

  • 7555 reflections

  • 423 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—S2 2.2502 (12)
Cu1—S3 2.2759 (12)
Cu1—O4 2.271 (3)
Cu1—N2 2.017 (4)
Cu1—N3 2.008 (4)
Cu2—S6 2.2724 (12)
Cu2—S7 2.2557 (12)
Cu2—O1 2.334 (3)
Cu2—N7 1.990 (4)
Cu2—N8 2.004 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5 0.88 2.21 2.860 (5) 131
N2—H22⋯O7 0.88 2.11 2.817 (5) 136
N3—H31⋯O3i 0.88 2.07 2.776 (5) 137
N3—H32⋯O11 0.88 2.05 2.881 (5) 156
N7—H71⋯O9 0.88 1.89 2.768 (5) 174
N7—H72⋯O6ii 0.88 2.10 2.807 (5) 137
N8—H81⋯O10 0.88 2.01 2.842 (5) 157
N8—H82⋯O2 0.88 2.08 2.894 (5) 154
C6—H6A⋯O8iii 0.98 2.47 3.295 (6) 141
C7—H7A⋯O12iv 0.98 2.48 3.247 (6) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z; (iv) -x+1, -y+2, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of systematic studies into the synthesis, characterization and biological activities of dithiocarbazates and their metal complexes (Hazari et al., 2012), crystals of the title complex, (I), were isolated and characterized crystallographically.

Complex (I), Fig. 1, comprises two independent complex cations and two nitrate anions in the asymmetric unit, and represents a low symmetry (P1; Z = 4) polymorph of the previously reported triclinic form (P1, Z = 2; Ali et al., 2011). The CuII atom is coordinated by a N2S2 donor set provided by two bidentate ligands and an O atom derived from a monodentate nitrate ligand, Table 1. The resulting N2S2O coordination geometry for the Cu1 atom is relatively close to a square pyramid as quantified by the value of τ = 0.15, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The value for the Cu2 atom, i.e. τ = 0.22, indicates a small deviation along the path towards trigonal bipyramidal. The τ value for the previously described polymorph of 0.17 (Ali et al., 2011) is intermediate between those calculated for the Cu atoms in (I). The primary difference between the cations comprising the asymmetric unit of (I) is found in the relative orientations of the coordinated nitrate groups, which are directed to opposite sides of the molecule. The orientation of the nitrate coordinated to the Cu2 atom matches that found in the literature polymorph. The three independent molecules are as illustrated in the overlay diagram, Fig. 2.

The crystal packing features significant hydrogen bonding interactions as expected from the composition. Thus, each amino-H atom forms a hydrogen bond to a nitrate-O atom, and each nitrate group atom participates in two N—H···O hydrogen bonds, Table 2. The result is the formation of a supramolecular layer along [110], Fig. 3. The layers are connected along the c axis by C–H···O interactions involving nitrate-O atoms not involved in N—H···O hydrogen bonds nor coordinated to a Cu centre, Fig. 4 and Table 2.

Related literature top

For related dithiocarbazate compounds, see: Hazari et al. (2012). For the previously reported polymorph, see: Ali et al. (2011). For additional structural analysis, see: Addison et al. (1984).

Experimental top

Copper(II) nitrate (1.17 g) was dissolved in dry ethanol (40 ml), in which a hot solution of 2,3-dimethyl-5-methylsulphanyl-[1,3,4]thiadiazolidine (2.4 g) in ethanol (40 ml) was added. The mixture was refluxed for 4 h. on a water bath. After reducing the volume and keeping overnight, a dark-blue product appeared, which was washed with ethanol (3 x 3 mL) and dried in a vacuum desiccator over silica gel. The product was recrystallized by dissoving the complex in ethanol (10 mL) and then layering this with petroleum ether (5 mL); M.pt: >493 K. The crystal structure determination showed that the original cyclic ligand had transformed to N-methyl-hydrazinecarbodithioic acid methyl ester (from which the cyclic form was prepared) during the course of the reaction.

Refinement top

The N– and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(N) and 1.2Uequiv(C). Owing to poor agreement, a number of reflections, i.e. (2 10 7), (1 11 0), (3 9 0), (12 0 6), (9 3 2), (7 7 3), (¯-10 2 7), (3 4 11) (12 0 12) and (8 4 11), were omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 1.15 and 0.95 e Å^-3^, respectively, were located 0.87 Å and 1.17 Å from the Cu1 and N5 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent Cu-containing molecules comprising the asymmetric unit of (I). The first independent molecule (with the Cu1 atom) is shown in red. Also included is the molecule observed in the previously reported polymorph (green). The S—Cu—S residues in each molecule have been overlapped.
[Figure 3] Fig. 3. A view of the supramolecular chain along [110] in (I) mediated by N—H···O hydrogen bonding, shown as blue dashed lines.
[Figure 4] Fig. 4. A view of the unit-cell contents in projection down the a axis in (I). The N—H···O and C—H···O interactions are shown as blue and orange dashed lines, respectively.
Bis(2,S-dimethyldithiocarbazate- κ2N3,S)(nitrato-κO)copper(II) nitrate top
Crystal data top
[Cu(NO3)(C3H8N2S2)2]NO3Z = 4
Mr = 460.03F(000) = 940
Triclinic, P1Dx = 1.857 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2716 (4) ÅCell parameters from 9482 reflections
b = 12.1741 (4) Åθ = 2.3–27.5°
c = 13.8970 (5) ŵ = 1.87 mm1
α = 115.449 (3)°T = 100 K
β = 100.734 (3)°Prism, dark-blue
γ = 97.258 (3)°0.40 × 0.20 × 0.10 mm
V = 1645.39 (10) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7555 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5675 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.080
Detector resolution: 10.4041 pixels mm-1θmax = 27.7°, θmin = 2.7°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1515
Tmin = 0.634, Tmax = 1.000l = 1818
25371 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0751P)2 + 6.3265P]
where P = (Fo2 + 2Fc2)/3
7555 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Cu(NO3)(C3H8N2S2)2]NO3γ = 97.258 (3)°
Mr = 460.03V = 1645.39 (10) Å3
Triclinic, P1Z = 4
a = 11.2716 (4) ÅMo Kα radiation
b = 12.1741 (4) ŵ = 1.87 mm1
c = 13.8970 (5) ÅT = 100 K
α = 115.449 (3)°0.40 × 0.20 × 0.10 mm
β = 100.734 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7555 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5675 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 1.000Rint = 0.080
25371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.09Δρmax = 1.15 e Å3
7555 reflectionsΔρmin = 0.95 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27022 (5)0.71242 (5)0.22467 (4)0.01064 (15)
Cu20.20705 (5)0.78519 (5)0.77159 (4)0.01078 (15)
S10.65195 (10)0.59926 (12)0.27050 (9)0.0159 (2)
S20.40155 (10)0.59825 (11)0.14944 (9)0.0155 (2)
S30.13598 (10)0.65016 (11)0.05685 (9)0.0139 (2)
S40.11634 (11)0.70264 (12)0.01711 (10)0.0188 (3)
S50.60066 (11)0.78742 (12)0.95772 (10)0.0190 (3)
S60.35150 (10)0.85031 (11)0.93451 (9)0.0143 (2)
S70.06784 (10)0.88609 (11)0.84813 (9)0.0139 (2)
S80.16110 (10)0.92279 (11)0.72725 (9)0.0133 (2)
O10.1587 (3)0.5846 (3)0.7551 (3)0.0177 (7)
O20.0076 (3)0.4891 (3)0.6179 (3)0.0199 (7)
O30.0550 (3)0.4046 (3)0.7214 (3)0.0202 (7)
O40.3519 (3)0.9027 (3)0.2425 (3)0.0232 (8)
O50.5043 (3)0.9861 (3)0.3912 (3)0.0235 (8)
O60.4745 (3)1.0785 (3)0.2888 (3)0.0203 (7)
O70.3444 (3)0.5699 (3)0.4424 (3)0.0263 (8)
O80.2260 (3)0.3833 (3)0.3526 (3)0.0233 (8)
O90.2420 (4)0.4953 (3)0.5264 (3)0.0245 (8)
O100.2186 (3)0.8161 (3)0.5108 (3)0.0165 (7)
O110.2091 (4)0.9896 (3)0.5040 (3)0.0255 (8)
O120.2295 (3)0.9840 (3)0.6602 (3)0.0254 (8)
N10.4943 (3)0.7112 (4)0.3668 (3)0.0106 (7)
N20.3831 (3)0.7541 (4)0.3726 (3)0.0116 (7)
H210.40270.83580.41390.014*
H220.34210.72120.40560.014*
N30.1317 (3)0.7749 (4)0.2882 (3)0.0127 (8)
H310.10390.72740.31600.015*
H320.16190.85120.34300.015*
N40.0302 (3)0.7770 (4)0.2120 (3)0.0114 (7)
N50.4450 (3)0.9892 (3)0.3079 (3)0.0119 (7)
N60.4480 (3)0.7287 (4)0.7694 (3)0.0130 (8)
N70.3416 (3)0.7342 (4)0.6995 (3)0.0124 (8)
H710.31150.66010.64160.015*
H720.36490.78740.67560.015*
N80.0826 (3)0.7273 (4)0.6262 (3)0.0123 (8)
H810.12210.73240.57880.015*
H820.04680.64800.60080.015*
N90.0108 (3)0.7954 (3)0.6308 (3)0.0095 (7)
N100.0668 (3)0.4928 (4)0.6978 (3)0.0133 (8)
N110.2703 (4)0.4823 (4)0.4388 (3)0.0151 (8)
N120.2198 (4)0.9315 (4)0.5595 (3)0.0169 (8)
C10.6459 (4)0.5218 (5)0.1266 (4)0.0178 (10)
H1A0.72110.49040.11760.027*
H1B0.64050.58090.09630.027*
H1C0.57280.45160.08710.027*
C20.5109 (4)0.6429 (4)0.2689 (4)0.0110 (8)
C30.5857 (4)0.7512 (5)0.4715 (4)0.0152 (9)
H3A0.62800.68400.46630.023*
H3B0.54400.77040.53070.023*
H3C0.64680.82600.48790.023*
C40.0671 (4)0.8334 (5)0.2569 (4)0.0176 (10)
H4A0.10070.87610.21590.026*
H4B0.03210.89400.33520.026*
H4C0.13370.76800.24960.026*
C50.0214 (4)0.7144 (4)0.1053 (4)0.0119 (9)
C60.0918 (5)0.6233 (5)0.1177 (4)0.0203 (10)
H6A0.16550.61240.17400.030*
H6B0.07690.54120.13030.030*
H6C0.01960.67300.12230.030*
C70.5800 (5)0.8552 (5)1.0945 (4)0.0224 (11)
H7A0.65480.86141.14730.034*
H7B0.50860.80241.09690.034*
H7C0.56530.93891.11410.034*
C80.4610 (4)0.7851 (4)0.8777 (4)0.0133 (9)
C90.5417 (4)0.6735 (5)0.7175 (4)0.0170 (10)
H9A0.57690.62660.75340.025*
H9B0.60780.74000.72570.025*
H9C0.50320.61690.63880.025*
C100.0875 (4)0.7751 (4)0.5256 (4)0.0139 (9)
H10A0.12480.84670.53690.021*
H10B0.15330.69890.49470.021*
H10C0.03620.76600.47410.021*
C110.0305 (4)0.8604 (4)0.7285 (4)0.0113 (8)
C120.1614 (4)0.9903 (5)0.8701 (4)0.0174 (10)
H12A0.23411.02620.87930.026*
H12B0.08561.05620.91500.026*
H12C0.16460.92540.89410.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0092 (3)0.0148 (3)0.0094 (3)0.0038 (2)0.0040 (2)0.0061 (2)
Cu20.0107 (3)0.0145 (3)0.0087 (3)0.0045 (2)0.0051 (2)0.0053 (2)
S10.0118 (5)0.0270 (6)0.0099 (5)0.0089 (5)0.0055 (4)0.0072 (5)
S20.0147 (5)0.0221 (6)0.0080 (5)0.0077 (5)0.0028 (4)0.0047 (5)
S30.0117 (5)0.0191 (6)0.0109 (5)0.0048 (4)0.0040 (4)0.0062 (4)
S40.0141 (5)0.0261 (7)0.0169 (6)0.0074 (5)0.0027 (4)0.0105 (5)
S50.0137 (5)0.0261 (7)0.0180 (6)0.0077 (5)0.0043 (5)0.0101 (5)
S60.0119 (5)0.0195 (6)0.0100 (5)0.0049 (4)0.0045 (4)0.0046 (4)
S70.0154 (5)0.0204 (6)0.0079 (5)0.0079 (4)0.0055 (4)0.0063 (4)
S80.0124 (5)0.0191 (6)0.0102 (5)0.0066 (4)0.0055 (4)0.0066 (4)
O10.0163 (16)0.0150 (17)0.0197 (17)0.0026 (13)0.0004 (13)0.0095 (14)
O20.0180 (17)0.0208 (18)0.0191 (18)0.0047 (14)0.0013 (14)0.0089 (15)
O30.0219 (17)0.0162 (17)0.0255 (19)0.0010 (14)0.0068 (15)0.0131 (15)
O40.0195 (17)0.0203 (18)0.0231 (19)0.0062 (14)0.0062 (15)0.0119 (16)
O50.0216 (18)0.026 (2)0.0210 (19)0.0025 (15)0.0026 (15)0.0142 (16)
O60.0257 (18)0.0164 (17)0.0232 (19)0.0010 (14)0.0095 (15)0.0130 (15)
O70.029 (2)0.023 (2)0.031 (2)0.0001 (16)0.0144 (17)0.0157 (17)
O80.0241 (18)0.0227 (19)0.0165 (18)0.0043 (15)0.0075 (15)0.0026 (15)
O90.034 (2)0.0234 (19)0.0134 (17)0.0020 (16)0.0096 (15)0.0076 (15)
O100.0196 (17)0.0166 (17)0.0159 (16)0.0060 (13)0.0114 (14)0.0067 (14)
O110.032 (2)0.0192 (19)0.0225 (19)0.0047 (16)0.0014 (16)0.0106 (16)
O120.028 (2)0.027 (2)0.0144 (18)0.0047 (16)0.0112 (15)0.0020 (15)
N10.0094 (17)0.0160 (19)0.0099 (18)0.0053 (14)0.0047 (14)0.0076 (15)
N20.0140 (18)0.0132 (19)0.0108 (18)0.0082 (15)0.0069 (15)0.0056 (15)
N30.0112 (17)0.018 (2)0.0090 (18)0.0026 (15)0.0010 (14)0.0073 (16)
N40.0088 (17)0.0159 (19)0.0117 (18)0.0047 (14)0.0042 (14)0.0073 (16)
N50.0113 (17)0.0116 (18)0.0150 (19)0.0051 (14)0.0087 (15)0.0053 (15)
N60.0101 (17)0.016 (2)0.0129 (19)0.0040 (15)0.0057 (15)0.0056 (16)
N70.0132 (18)0.0137 (19)0.0103 (18)0.0019 (15)0.0042 (15)0.0055 (15)
N80.0140 (18)0.0161 (19)0.0113 (18)0.0089 (15)0.0067 (15)0.0077 (16)
N90.0089 (16)0.0122 (18)0.0098 (17)0.0034 (14)0.0051 (14)0.0061 (15)
N100.0101 (17)0.0131 (19)0.017 (2)0.0048 (15)0.0083 (15)0.0047 (16)
N110.0132 (18)0.018 (2)0.018 (2)0.0046 (15)0.0061 (16)0.0099 (17)
N120.0109 (18)0.021 (2)0.018 (2)0.0034 (16)0.0054 (15)0.0072 (17)
C10.016 (2)0.025 (3)0.012 (2)0.0083 (19)0.0065 (18)0.006 (2)
C20.013 (2)0.009 (2)0.010 (2)0.0026 (16)0.0056 (16)0.0036 (17)
C30.012 (2)0.025 (3)0.008 (2)0.0068 (18)0.0028 (17)0.0054 (19)
C40.015 (2)0.019 (2)0.019 (2)0.0091 (19)0.0097 (19)0.006 (2)
C50.010 (2)0.013 (2)0.014 (2)0.0021 (16)0.0036 (17)0.0075 (18)
C60.024 (2)0.025 (3)0.017 (2)0.005 (2)0.006 (2)0.014 (2)
C70.022 (2)0.030 (3)0.015 (2)0.007 (2)0.004 (2)0.011 (2)
C80.015 (2)0.014 (2)0.009 (2)0.0033 (17)0.0047 (17)0.0039 (18)
C90.015 (2)0.021 (2)0.016 (2)0.0094 (19)0.0099 (18)0.0060 (19)
C100.014 (2)0.019 (2)0.010 (2)0.0056 (18)0.0025 (17)0.0072 (18)
C110.011 (2)0.014 (2)0.011 (2)0.0032 (17)0.0059 (16)0.0063 (18)
C120.017 (2)0.025 (3)0.010 (2)0.010 (2)0.0076 (18)0.0050 (19)
Geometric parameters (Å, º) top
Cu1—S22.2502 (12)N3—N41.417 (5)
Cu1—S32.2759 (12)N3—H310.8800
Cu1—O42.271 (3)N3—H320.8800
Cu1—N22.017 (4)N4—C51.321 (6)
Cu1—N32.008 (4)N4—C41.463 (6)
Cu2—S62.2724 (12)N6—C81.328 (6)
Cu2—S72.2557 (12)N6—N71.424 (5)
Cu2—O12.334 (3)N6—C91.459 (6)
Cu2—N71.990 (4)N7—H710.8800
Cu2—N82.004 (4)N7—H720.8800
S1—C21.738 (4)N8—N91.414 (5)
S1—C11.790 (5)N8—H810.8800
S2—C21.692 (5)N8—H820.8800
S3—C51.691 (4)N9—C111.324 (6)
S4—C51.737 (4)N9—C101.454 (6)
S4—C61.795 (5)C1—H1A0.9800
S5—C81.739 (5)C1—H1B0.9800
S5—C71.793 (5)C1—H1C0.9800
S6—C81.688 (5)C3—H3A0.9800
S7—C111.694 (5)C3—H3B0.9800
S8—C111.740 (4)C3—H3C0.9800
S8—C121.794 (5)C4—H4A0.9800
O1—N101.262 (5)C4—H4B0.9800
O2—N101.241 (5)C4—H4C0.9800
O3—N101.250 (5)C6—H6A0.9800
O4—N51.257 (5)C6—H6B0.9800
O5—N51.242 (5)C6—H6C0.9800
O6—N51.246 (5)C7—H7A0.9800
O7—N111.246 (5)C7—H7B0.9800
O8—N111.234 (5)C7—H7C0.9800
O9—N111.264 (5)C9—H9A0.9800
O10—N121.268 (5)C9—H9B0.9800
O11—N121.252 (5)C9—H9C0.9800
O12—N121.239 (5)C10—H10A0.9800
N1—C21.318 (6)C10—H10B0.9800
N1—N21.420 (5)C10—H10C0.9800
N1—C31.457 (6)C12—H12A0.9800
N2—H210.8800C12—H12B0.9800
N2—H220.8800C12—H12C0.9800
N3—Cu1—N294.04 (14)O2—N10—O3121.1 (4)
N3—Cu1—S2166.11 (12)O2—N10—O1120.4 (4)
N2—Cu1—S286.27 (11)O3—N10—O1118.4 (4)
N3—Cu1—O491.59 (15)O8—N11—O7121.4 (4)
N2—Cu1—O491.09 (14)O8—N11—O9119.8 (4)
S2—Cu1—O4102.29 (11)O7—N11—O9118.8 (4)
N3—Cu1—S385.68 (11)O12—N12—O11121.4 (4)
N2—Cu1—S3175.33 (12)O12—N12—O10119.7 (4)
S2—Cu1—S392.88 (4)O11—N12—O10118.9 (4)
O4—Cu1—S393.58 (9)S1—C1—H1A109.5
N7—Cu2—N892.53 (15)S1—C1—H1B109.5
N7—Cu2—S7165.60 (12)H1A—C1—H1B109.5
N8—Cu2—S785.68 (11)S1—C1—H1C109.5
N7—Cu2—S686.25 (11)H1A—C1—H1C109.5
N8—Cu2—S6178.76 (11)H1B—C1—H1C109.5
S7—Cu2—S695.44 (4)N1—C2—S2122.5 (3)
N7—Cu2—O187.60 (14)N1—C2—S1115.5 (3)
N8—Cu2—O189.83 (14)S2—C2—S1122.0 (3)
S7—Cu2—O1106.66 (9)N1—C3—H3A109.5
S6—Cu2—O190.35 (9)N1—C3—H3B109.5
C2—S1—C1102.6 (2)H3A—C3—H3B109.5
C2—S2—Cu197.03 (15)N1—C3—H3C109.5
C5—S3—Cu196.68 (16)H3A—C3—H3C109.5
C5—S4—C6103.3 (2)H3B—C3—H3C109.5
C8—S5—C7102.6 (2)N4—C4—H4A109.5
C8—S6—Cu295.88 (16)N4—C4—H4B109.5
C11—S7—Cu296.78 (15)H4A—C4—H4B109.5
C11—S8—C12102.0 (2)N4—C4—H4C109.5
N10—O1—Cu2133.0 (3)H4A—C4—H4C109.5
N5—O4—Cu1133.9 (3)H4B—C4—H4C109.5
C2—N1—N2119.0 (4)N4—C5—S3122.7 (3)
C2—N1—C3124.2 (4)N4—C5—S4115.4 (3)
N2—N1—C3116.7 (3)S3—C5—S4121.8 (3)
N1—N2—Cu1114.4 (3)S4—C6—H6A109.5
N1—N2—H21108.6S4—C6—H6B109.5
Cu1—N2—H21108.6H6A—C6—H6B109.5
N1—N2—H22108.6S4—C6—H6C109.5
Cu1—N2—H22108.6H6A—C6—H6C109.5
H21—N2—H22107.6H6B—C6—H6C109.5
N4—N3—Cu1115.0 (3)S5—C7—H7A109.5
N4—N3—H31108.5S5—C7—H7B109.5
Cu1—N3—H31108.5H7A—C7—H7B109.5
N4—N3—H32108.5S5—C7—H7C109.5
Cu1—N3—H32108.5H7A—C7—H7C109.5
H31—N3—H32107.5H7B—C7—H7C109.5
C5—N4—N3118.3 (4)N6—C8—S6123.1 (3)
C5—N4—C4124.2 (4)N6—C8—S5114.8 (3)
N3—N4—C4116.9 (4)S6—C8—S5122.1 (3)
O5—N5—O6121.1 (4)N6—C9—H9A109.5
O5—N5—O4120.0 (4)N6—C9—H9B109.5
O6—N5—O4118.9 (4)H9A—C9—H9B109.5
C8—N6—N7117.8 (4)N6—C9—H9C109.5
C8—N6—C9124.5 (4)H9A—C9—H9C109.5
N7—N6—C9117.3 (4)H9B—C9—H9C109.5
N6—N7—Cu2114.5 (3)N9—C10—H10A109.5
N6—N7—H71108.6N9—C10—H10B109.5
Cu2—N7—H71108.6H10A—C10—H10B109.5
N6—N7—H72108.6N9—C10—H10C109.5
Cu2—N7—H72108.6H10A—C10—H10C109.5
H71—N7—H72107.6H10B—C10—H10C109.5
N9—N8—Cu2114.5 (3)N9—C11—S7122.3 (3)
N9—N8—H81108.6N9—C11—S8115.9 (3)
Cu2—N8—H81108.6S7—C11—S8121.8 (3)
N9—N8—H82108.6S8—C12—H12A109.5
Cu2—N8—H82108.6S8—C12—H12B109.5
H81—N8—H82107.6H12A—C12—H12B109.5
C11—N9—N8117.6 (4)S8—C12—H12C109.5
C11—N9—C10125.2 (4)H12A—C12—H12C109.5
N8—N9—C10116.6 (3)H12B—C12—H12C109.5
N3—Cu1—S2—C298.7 (5)S6—Cu2—N7—N615.0 (3)
N2—Cu1—S2—C26.90 (19)O1—Cu2—N7—N675.5 (3)
O4—Cu1—S2—C283.40 (18)N7—Cu2—N8—N9149.6 (3)
S3—Cu1—S2—C2177.70 (16)S7—Cu2—N8—N916.1 (3)
N3—Cu1—S3—C55.78 (19)S6—Cu2—N8—N9139 (5)
N2—Cu1—S3—C592.5 (13)O1—Cu2—N8—N9122.8 (3)
S2—Cu1—S3—C5171.94 (16)Cu2—N8—N9—C1120.0 (5)
O4—Cu1—S3—C585.54 (18)Cu2—N8—N9—C10167.7 (3)
N7—Cu2—S6—C89.96 (19)Cu2—O1—N10—O215.7 (6)
N8—Cu2—S6—C821 (5)Cu2—O1—N10—O3166.4 (3)
S7—Cu2—S6—C8175.62 (16)N2—N1—C2—S23.0 (6)
O1—Cu2—S6—C877.61 (18)C3—N1—C2—S2179.8 (3)
N7—Cu2—S7—C1174.6 (5)N2—N1—C2—S1178.0 (3)
N8—Cu2—S7—C118.69 (19)C3—N1—C2—S10.7 (6)
S6—Cu2—S7—C11170.78 (16)Cu1—S2—C2—N17.4 (4)
O1—Cu2—S7—C1197.22 (18)Cu1—S2—C2—S1173.6 (2)
N7—Cu2—O1—N10111.8 (4)C1—S1—C2—N1175.2 (4)
N8—Cu2—O1—N1019.2 (4)C1—S1—C2—S25.8 (3)
S7—Cu2—O1—N1066.2 (4)N3—N4—C5—S39.1 (6)
S6—Cu2—O1—N10162.0 (4)C4—N4—C5—S3179.8 (3)
N3—Cu1—O4—N5105.5 (4)N3—N4—C5—S4171.0 (3)
N2—Cu1—O4—N511.4 (4)C4—N4—C5—S40.4 (6)
S2—Cu1—O4—N575.0 (4)Cu1—S3—C5—N40.1 (4)
S3—Cu1—O4—N5168.7 (4)Cu1—S3—C5—S4179.7 (2)
C2—N1—N2—Cu14.4 (5)C6—S4—C5—N4176.2 (3)
C3—N1—N2—Cu1173.1 (3)C6—S4—C5—S33.7 (4)
N3—Cu1—N2—N1173.2 (3)N7—N6—C8—S65.9 (6)
S2—Cu1—N2—N17.1 (3)C9—N6—C8—S6178.8 (4)
O4—Cu1—N2—N195.2 (3)N7—N6—C8—S5173.9 (3)
S3—Cu1—N2—N186.8 (14)C9—N6—C8—S51.0 (6)
N2—Cu1—N3—N4173.4 (3)Cu2—S6—C8—N65.2 (4)
S2—Cu1—N3—N495.8 (5)Cu2—S6—C8—S5175.0 (3)
O4—Cu1—N3—N482.2 (3)C7—S5—C8—N6174.7 (4)
S3—Cu1—N3—N411.3 (3)C7—S5—C8—S65.5 (4)
Cu1—N3—N4—C514.6 (5)N8—N9—C11—S711.7 (6)
Cu1—N3—N4—C4174.1 (3)C10—N9—C11—S7176.7 (3)
Cu1—O4—N5—O59.9 (6)N8—N9—C11—S8170.5 (3)
Cu1—O4—N5—O6171.7 (3)C10—N9—C11—S81.1 (6)
C8—N6—N7—Cu215.9 (5)Cu2—S7—C11—N91.2 (4)
C9—N6—N7—Cu2170.7 (3)Cu2—S7—C11—S8176.6 (2)
N8—Cu2—N7—N6165.2 (3)C12—S8—C11—N9175.4 (3)
S7—Cu2—N7—N6112.3 (5)C12—S8—C11—S76.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O50.882.212.860 (5)131
N2—H22···O70.882.112.817 (5)136
N3—H31···O3i0.882.072.776 (5)137
N3—H32···O110.882.052.881 (5)156
N7—H71···O90.881.892.768 (5)174
N7—H72···O6ii0.882.102.807 (5)137
N8—H81···O100.882.012.842 (5)157
N8—H82···O20.882.082.894 (5)154
C6—H6A···O8iii0.982.473.295 (6)141
C7—H7A···O12iv0.982.483.247 (6)135
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)(C3H8N2S2)2]NO3
Mr460.03
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.2716 (4), 12.1741 (4), 13.8970 (5)
α, β, γ (°)115.449 (3), 100.734 (3), 97.258 (3)
V3)1645.39 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.634, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25371, 7555, 5675
Rint0.080
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.165, 1.09
No. of reflections7555
No. of parameters423
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.95

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—S22.2502 (12)Cu2—S62.2724 (12)
Cu1—S32.2759 (12)Cu2—S72.2557 (12)
Cu1—O42.271 (3)Cu2—O12.334 (3)
Cu1—N22.017 (4)Cu2—N71.990 (4)
Cu1—N32.008 (4)Cu2—N82.004 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O50.882.212.860 (5)131
N2—H22···O70.882.112.817 (5)136
N3—H31···O3i0.882.072.776 (5)137
N3—H32···O110.882.052.881 (5)156
N7—H71···O90.881.892.768 (5)174
N7—H72···O6ii0.882.102.807 (5)137
N8—H81···O100.882.012.842 (5)157
N8—H82···O20.882.082.894 (5)154
C6—H6A···O8iii0.982.473.295 (6)141
C7—H7A···O12iv0.982.483.247 (6)135
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y+2, z+2.
 

Footnotes

Additional correspondence author, e-mail: benudey@yahoo.com.

Acknowledgements

The University Grants Commission, Bangladesh, is thanked for a fellowship to BG. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, M. A., Mirza, A. H., Yee, C. Y., Rahgeni, H. & Bernhardt, P. V. (2011). Polyhedron, 30, 542–548.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m779-m780
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds