metal-organic compounds
Bis(2,S-dimethyldithiocarbazate-κ2N3,S)(nitrato-κO)copper(II) nitrate
aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The title complex, [Cu(NO3)(C3H8N2S2)2]NO3, represents a low-symmetry polymorph (P-1, Z = 4) of a previously reported form [P-1, Z = 2; Ali et al. (2011). Polyhedron, 30, 542–548]. The CuII atom in each independent cation is found within a distorted square-pyramidal N2S2O coordination geometry defined by two N,S-bidentate ligands and an O atom derived from a monodentate nitrate. The primary difference between the cations is found in the relative orientations of the coordinated nitrate groups, which are directed to opposite sides of the molecule. Supramolecular layers along [110] and sustained by N—H⋯O interactions feature in the crystal packing. These are connected along the c axis by C—H⋯O interactions.
Related literature
For related dithiocarbazate compounds, see: Hazari et al. (2012). For the previously reported polymorph, see: Ali et al. (2011). For additional structural analysis, see: Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812021423/hg5229sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812021423/hg5229Isup2.hkl
Copper(II) nitrate (1.17 g) was dissolved in dry ethanol (40 ml), in which a hot solution of 2,3-dimethyl-5-methylsulphanyl-[1,3,4]thiadiazolidine (2.4 g) in ethanol (40 ml) was added. The mixture was refluxed for 4 h. on a water bath. After reducing the volume and keeping overnight, a dark-blue product appeared, which was washed with ethanol (3 x 3 mL) and dried in a vacuum desiccator over silica gel. The product was recrystallized by dissoving the complex in ethanol (10 mL) and then layering this with petroleum ether (5 mL); M.pt: >493 K. The
determination showed that the original cyclic ligand had transformed to N-methyl-hydrazinecarbodithioic acid methyl ester (from which the cyclic form was prepared) during the course of the reaction.The N– and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.98 Å) and were included in the 2 10 7), (1 11 0), (3 9 0), (12 0 6), (9 3 2), (7 7 3), (¯-10 2 7), (3 4 11) (12 0 12) and (8 4 11), were omitted from the final cycles of The maximum and minimum residual electron density peaks of 1.15 and 0.95 e Å^-3^, respectively, were located 0.87 Å and 1.17 Å from the Cu1 and N5 atoms, respectively.
in the riding model approximation, with Uiso(H) = 1.2Uequiv(N) and 1.2Uequiv(C). Owing to poor agreement, a number of reflections, i.e. (Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structures of the components comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. Overlay diagram of the two independent Cu-containing molecules comprising the asymmetric unit of (I). The first independent molecule (with the Cu1 atom) is shown in red. Also included is the molecule observed in the previously reported polymorph (green). The S—Cu—S residues in each molecule have been overlapped. | |
Fig. 3. A view of the supramolecular chain along [110] in (I) mediated by N—H···O hydrogen bonding, shown as blue dashed lines. | |
Fig. 4. A view of the unit-cell contents in projection down the a axis in (I). The N—H···O and C—H···O interactions are shown as blue and orange dashed lines, respectively. |
[Cu(NO3)(C3H8N2S2)2]NO3 | Z = 4 |
Mr = 460.03 | F(000) = 940 |
Triclinic, P1 | Dx = 1.857 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.2716 (4) Å | Cell parameters from 9482 reflections |
b = 12.1741 (4) Å | θ = 2.3–27.5° |
c = 13.8970 (5) Å | µ = 1.87 mm−1 |
α = 115.449 (3)° | T = 100 K |
β = 100.734 (3)° | Prism, dark-blue |
γ = 97.258 (3)° | 0.40 × 0.20 × 0.10 mm |
V = 1645.39 (10) Å3 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 7555 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 5675 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.080 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 27.7°, θmin = 2.7° |
ω scan | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −15→15 |
Tmin = 0.634, Tmax = 1.000 | l = −18→18 |
25371 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0751P)2 + 6.3265P] where P = (Fo2 + 2Fc2)/3 |
7555 reflections | (Δ/σ)max = 0.001 |
423 parameters | Δρmax = 1.15 e Å−3 |
0 restraints | Δρmin = −0.95 e Å−3 |
[Cu(NO3)(C3H8N2S2)2]NO3 | γ = 97.258 (3)° |
Mr = 460.03 | V = 1645.39 (10) Å3 |
Triclinic, P1 | Z = 4 |
a = 11.2716 (4) Å | Mo Kα radiation |
b = 12.1741 (4) Å | µ = 1.87 mm−1 |
c = 13.8970 (5) Å | T = 100 K |
α = 115.449 (3)° | 0.40 × 0.20 × 0.10 mm |
β = 100.734 (3)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 7555 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 5675 reflections with I > 2σ(I) |
Tmin = 0.634, Tmax = 1.000 | Rint = 0.080 |
25371 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.15 e Å−3 |
7555 reflections | Δρmin = −0.95 e Å−3 |
423 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.27022 (5) | 0.71242 (5) | 0.22467 (4) | 0.01064 (15) | |
Cu2 | 0.20705 (5) | 0.78519 (5) | 0.77159 (4) | 0.01078 (15) | |
S1 | 0.65195 (10) | 0.59926 (12) | 0.27050 (9) | 0.0159 (2) | |
S2 | 0.40155 (10) | 0.59825 (11) | 0.14944 (9) | 0.0155 (2) | |
S3 | 0.13598 (10) | 0.65016 (11) | 0.05685 (9) | 0.0139 (2) | |
S4 | −0.11634 (11) | 0.70264 (12) | 0.01711 (10) | 0.0188 (3) | |
S5 | 0.60066 (11) | 0.78742 (12) | 0.95772 (10) | 0.0190 (3) | |
S6 | 0.35150 (10) | 0.85031 (11) | 0.93451 (9) | 0.0143 (2) | |
S7 | 0.06784 (10) | 0.88609 (11) | 0.84813 (9) | 0.0139 (2) | |
S8 | −0.16110 (10) | 0.92279 (11) | 0.72725 (9) | 0.0133 (2) | |
O1 | 0.1587 (3) | 0.5846 (3) | 0.7551 (3) | 0.0177 (7) | |
O2 | −0.0076 (3) | 0.4891 (3) | 0.6179 (3) | 0.0199 (7) | |
O3 | 0.0550 (3) | 0.4046 (3) | 0.7214 (3) | 0.0202 (7) | |
O4 | 0.3519 (3) | 0.9027 (3) | 0.2425 (3) | 0.0232 (8) | |
O5 | 0.5043 (3) | 0.9861 (3) | 0.3912 (3) | 0.0235 (8) | |
O6 | 0.4745 (3) | 1.0785 (3) | 0.2888 (3) | 0.0203 (7) | |
O7 | 0.3444 (3) | 0.5699 (3) | 0.4424 (3) | 0.0263 (8) | |
O8 | 0.2260 (3) | 0.3833 (3) | 0.3526 (3) | 0.0233 (8) | |
O9 | 0.2420 (4) | 0.4953 (3) | 0.5264 (3) | 0.0245 (8) | |
O10 | 0.2186 (3) | 0.8161 (3) | 0.5108 (3) | 0.0165 (7) | |
O11 | 0.2091 (4) | 0.9896 (3) | 0.5040 (3) | 0.0255 (8) | |
O12 | 0.2295 (3) | 0.9840 (3) | 0.6602 (3) | 0.0254 (8) | |
N1 | 0.4943 (3) | 0.7112 (4) | 0.3668 (3) | 0.0106 (7) | |
N2 | 0.3831 (3) | 0.7541 (4) | 0.3726 (3) | 0.0116 (7) | |
H21 | 0.4027 | 0.8358 | 0.4139 | 0.014* | |
H22 | 0.3421 | 0.7212 | 0.4056 | 0.014* | |
N3 | 0.1317 (3) | 0.7749 (4) | 0.2882 (3) | 0.0127 (8) | |
H31 | 0.1039 | 0.7274 | 0.3160 | 0.015* | |
H32 | 0.1619 | 0.8512 | 0.3430 | 0.015* | |
N4 | 0.0302 (3) | 0.7770 (4) | 0.2120 (3) | 0.0114 (7) | |
N5 | 0.4450 (3) | 0.9892 (3) | 0.3079 (3) | 0.0119 (7) | |
N6 | 0.4480 (3) | 0.7287 (4) | 0.7694 (3) | 0.0130 (8) | |
N7 | 0.3416 (3) | 0.7342 (4) | 0.6995 (3) | 0.0124 (8) | |
H71 | 0.3115 | 0.6601 | 0.6416 | 0.015* | |
H72 | 0.3649 | 0.7874 | 0.6756 | 0.015* | |
N8 | 0.0826 (3) | 0.7273 (4) | 0.6262 (3) | 0.0123 (8) | |
H81 | 0.1221 | 0.7324 | 0.5788 | 0.015* | |
H82 | 0.0468 | 0.6480 | 0.6008 | 0.015* | |
N9 | −0.0108 (3) | 0.7954 (3) | 0.6308 (3) | 0.0095 (7) | |
N10 | 0.0668 (3) | 0.4928 (4) | 0.6978 (3) | 0.0133 (8) | |
N11 | 0.2703 (4) | 0.4823 (4) | 0.4388 (3) | 0.0151 (8) | |
N12 | 0.2198 (4) | 0.9315 (4) | 0.5595 (3) | 0.0169 (8) | |
C1 | 0.6459 (4) | 0.5218 (5) | 0.1266 (4) | 0.0178 (10) | |
H1A | 0.7211 | 0.4904 | 0.1176 | 0.027* | |
H1B | 0.6405 | 0.5809 | 0.0963 | 0.027* | |
H1C | 0.5728 | 0.4516 | 0.0871 | 0.027* | |
C2 | 0.5109 (4) | 0.6429 (4) | 0.2689 (4) | 0.0110 (8) | |
C3 | 0.5857 (4) | 0.7512 (5) | 0.4715 (4) | 0.0152 (9) | |
H3A | 0.6280 | 0.6840 | 0.4663 | 0.023* | |
H3B | 0.5440 | 0.7704 | 0.5307 | 0.023* | |
H3C | 0.6468 | 0.8260 | 0.4879 | 0.023* | |
C4 | −0.0671 (4) | 0.8334 (5) | 0.2569 (4) | 0.0176 (10) | |
H4A | −0.1007 | 0.8761 | 0.2159 | 0.026* | |
H4B | −0.0321 | 0.8940 | 0.3352 | 0.026* | |
H4C | −0.1337 | 0.7680 | 0.2496 | 0.026* | |
C5 | 0.0214 (4) | 0.7144 (4) | 0.1053 (4) | 0.0119 (9) | |
C6 | −0.0918 (5) | 0.6233 (5) | −0.1177 (4) | 0.0203 (10) | |
H6A | −0.1655 | 0.6124 | −0.1740 | 0.030* | |
H6B | −0.0769 | 0.5412 | −0.1303 | 0.030* | |
H6C | −0.0196 | 0.6730 | −0.1223 | 0.030* | |
C7 | 0.5800 (5) | 0.8552 (5) | 1.0945 (4) | 0.0224 (11) | |
H7A | 0.6548 | 0.8614 | 1.1473 | 0.034* | |
H7B | 0.5086 | 0.8024 | 1.0969 | 0.034* | |
H7C | 0.5653 | 0.9389 | 1.1141 | 0.034* | |
C8 | 0.4610 (4) | 0.7851 (4) | 0.8777 (4) | 0.0133 (9) | |
C9 | 0.5417 (4) | 0.6735 (5) | 0.7175 (4) | 0.0170 (10) | |
H9A | 0.5769 | 0.6266 | 0.7534 | 0.025* | |
H9B | 0.6078 | 0.7400 | 0.7257 | 0.025* | |
H9C | 0.5032 | 0.6169 | 0.6388 | 0.025* | |
C10 | −0.0875 (4) | 0.7751 (4) | 0.5256 (4) | 0.0139 (9) | |
H10A | −0.1248 | 0.8467 | 0.5369 | 0.021* | |
H10B | −0.1533 | 0.6989 | 0.4947 | 0.021* | |
H10C | −0.0362 | 0.7660 | 0.4741 | 0.021* | |
C11 | −0.0305 (4) | 0.8604 (4) | 0.7285 (4) | 0.0113 (8) | |
C12 | −0.1614 (4) | 0.9903 (5) | 0.8701 (4) | 0.0174 (10) | |
H12A | −0.2341 | 1.0262 | 0.8793 | 0.026* | |
H12B | −0.0856 | 1.0562 | 0.9150 | 0.026* | |
H12C | −0.1646 | 0.9254 | 0.8941 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0092 (3) | 0.0148 (3) | 0.0094 (3) | 0.0038 (2) | 0.0040 (2) | 0.0061 (2) |
Cu2 | 0.0107 (3) | 0.0145 (3) | 0.0087 (3) | 0.0045 (2) | 0.0051 (2) | 0.0053 (2) |
S1 | 0.0118 (5) | 0.0270 (6) | 0.0099 (5) | 0.0089 (5) | 0.0055 (4) | 0.0072 (5) |
S2 | 0.0147 (5) | 0.0221 (6) | 0.0080 (5) | 0.0077 (5) | 0.0028 (4) | 0.0047 (5) |
S3 | 0.0117 (5) | 0.0191 (6) | 0.0109 (5) | 0.0048 (4) | 0.0040 (4) | 0.0062 (4) |
S4 | 0.0141 (5) | 0.0261 (7) | 0.0169 (6) | 0.0074 (5) | 0.0027 (4) | 0.0105 (5) |
S5 | 0.0137 (5) | 0.0261 (7) | 0.0180 (6) | 0.0077 (5) | 0.0043 (5) | 0.0101 (5) |
S6 | 0.0119 (5) | 0.0195 (6) | 0.0100 (5) | 0.0049 (4) | 0.0045 (4) | 0.0046 (4) |
S7 | 0.0154 (5) | 0.0204 (6) | 0.0079 (5) | 0.0079 (4) | 0.0055 (4) | 0.0063 (4) |
S8 | 0.0124 (5) | 0.0191 (6) | 0.0102 (5) | 0.0066 (4) | 0.0055 (4) | 0.0066 (4) |
O1 | 0.0163 (16) | 0.0150 (17) | 0.0197 (17) | −0.0026 (13) | 0.0004 (13) | 0.0095 (14) |
O2 | 0.0180 (17) | 0.0208 (18) | 0.0191 (18) | 0.0047 (14) | 0.0013 (14) | 0.0089 (15) |
O3 | 0.0219 (17) | 0.0162 (17) | 0.0255 (19) | 0.0010 (14) | 0.0068 (15) | 0.0131 (15) |
O4 | 0.0195 (17) | 0.0203 (18) | 0.0231 (19) | −0.0062 (14) | −0.0062 (15) | 0.0119 (16) |
O5 | 0.0216 (18) | 0.026 (2) | 0.0210 (19) | −0.0025 (15) | −0.0026 (15) | 0.0142 (16) |
O6 | 0.0257 (18) | 0.0164 (17) | 0.0232 (19) | 0.0010 (14) | 0.0095 (15) | 0.0130 (15) |
O7 | 0.029 (2) | 0.023 (2) | 0.031 (2) | −0.0001 (16) | 0.0144 (17) | 0.0157 (17) |
O8 | 0.0241 (18) | 0.0227 (19) | 0.0165 (18) | 0.0043 (15) | 0.0075 (15) | 0.0026 (15) |
O9 | 0.034 (2) | 0.0234 (19) | 0.0134 (17) | −0.0020 (16) | 0.0096 (15) | 0.0076 (15) |
O10 | 0.0196 (17) | 0.0166 (17) | 0.0159 (16) | 0.0060 (13) | 0.0114 (14) | 0.0067 (14) |
O11 | 0.032 (2) | 0.0192 (19) | 0.0225 (19) | 0.0047 (16) | −0.0014 (16) | 0.0106 (16) |
O12 | 0.028 (2) | 0.027 (2) | 0.0144 (18) | 0.0047 (16) | 0.0112 (15) | 0.0020 (15) |
N1 | 0.0094 (17) | 0.0160 (19) | 0.0099 (18) | 0.0053 (14) | 0.0047 (14) | 0.0076 (15) |
N2 | 0.0140 (18) | 0.0132 (19) | 0.0108 (18) | 0.0082 (15) | 0.0069 (15) | 0.0056 (15) |
N3 | 0.0112 (17) | 0.018 (2) | 0.0090 (18) | 0.0026 (15) | 0.0010 (14) | 0.0073 (16) |
N4 | 0.0088 (17) | 0.0159 (19) | 0.0117 (18) | 0.0047 (14) | 0.0042 (14) | 0.0073 (16) |
N5 | 0.0113 (17) | 0.0116 (18) | 0.0150 (19) | 0.0051 (14) | 0.0087 (15) | 0.0053 (15) |
N6 | 0.0101 (17) | 0.016 (2) | 0.0129 (19) | 0.0040 (15) | 0.0057 (15) | 0.0056 (16) |
N7 | 0.0132 (18) | 0.0137 (19) | 0.0103 (18) | 0.0019 (15) | 0.0042 (15) | 0.0055 (15) |
N8 | 0.0140 (18) | 0.0161 (19) | 0.0113 (18) | 0.0089 (15) | 0.0067 (15) | 0.0077 (16) |
N9 | 0.0089 (16) | 0.0122 (18) | 0.0098 (17) | 0.0034 (14) | 0.0051 (14) | 0.0061 (15) |
N10 | 0.0101 (17) | 0.0131 (19) | 0.017 (2) | 0.0048 (15) | 0.0083 (15) | 0.0047 (16) |
N11 | 0.0132 (18) | 0.018 (2) | 0.018 (2) | 0.0046 (15) | 0.0061 (16) | 0.0099 (17) |
N12 | 0.0109 (18) | 0.021 (2) | 0.018 (2) | 0.0034 (16) | 0.0054 (15) | 0.0072 (17) |
C1 | 0.016 (2) | 0.025 (3) | 0.012 (2) | 0.0083 (19) | 0.0065 (18) | 0.006 (2) |
C2 | 0.013 (2) | 0.009 (2) | 0.010 (2) | 0.0026 (16) | 0.0056 (16) | 0.0036 (17) |
C3 | 0.012 (2) | 0.025 (3) | 0.008 (2) | 0.0068 (18) | 0.0028 (17) | 0.0054 (19) |
C4 | 0.015 (2) | 0.019 (2) | 0.019 (2) | 0.0091 (19) | 0.0097 (19) | 0.006 (2) |
C5 | 0.010 (2) | 0.013 (2) | 0.014 (2) | 0.0021 (16) | 0.0036 (17) | 0.0075 (18) |
C6 | 0.024 (2) | 0.025 (3) | 0.017 (2) | 0.005 (2) | 0.006 (2) | 0.014 (2) |
C7 | 0.022 (2) | 0.030 (3) | 0.015 (2) | 0.007 (2) | 0.004 (2) | 0.011 (2) |
C8 | 0.015 (2) | 0.014 (2) | 0.009 (2) | 0.0033 (17) | 0.0047 (17) | 0.0039 (18) |
C9 | 0.015 (2) | 0.021 (2) | 0.016 (2) | 0.0094 (19) | 0.0099 (18) | 0.0060 (19) |
C10 | 0.014 (2) | 0.019 (2) | 0.010 (2) | 0.0056 (18) | 0.0025 (17) | 0.0072 (18) |
C11 | 0.011 (2) | 0.014 (2) | 0.011 (2) | 0.0032 (17) | 0.0059 (16) | 0.0063 (18) |
C12 | 0.017 (2) | 0.025 (3) | 0.010 (2) | 0.010 (2) | 0.0076 (18) | 0.0050 (19) |
Cu1—S2 | 2.2502 (12) | N3—N4 | 1.417 (5) |
Cu1—S3 | 2.2759 (12) | N3—H31 | 0.8800 |
Cu1—O4 | 2.271 (3) | N3—H32 | 0.8800 |
Cu1—N2 | 2.017 (4) | N4—C5 | 1.321 (6) |
Cu1—N3 | 2.008 (4) | N4—C4 | 1.463 (6) |
Cu2—S6 | 2.2724 (12) | N6—C8 | 1.328 (6) |
Cu2—S7 | 2.2557 (12) | N6—N7 | 1.424 (5) |
Cu2—O1 | 2.334 (3) | N6—C9 | 1.459 (6) |
Cu2—N7 | 1.990 (4) | N7—H71 | 0.8800 |
Cu2—N8 | 2.004 (4) | N7—H72 | 0.8800 |
S1—C2 | 1.738 (4) | N8—N9 | 1.414 (5) |
S1—C1 | 1.790 (5) | N8—H81 | 0.8800 |
S2—C2 | 1.692 (5) | N8—H82 | 0.8800 |
S3—C5 | 1.691 (4) | N9—C11 | 1.324 (6) |
S4—C5 | 1.737 (4) | N9—C10 | 1.454 (6) |
S4—C6 | 1.795 (5) | C1—H1A | 0.9800 |
S5—C8 | 1.739 (5) | C1—H1B | 0.9800 |
S5—C7 | 1.793 (5) | C1—H1C | 0.9800 |
S6—C8 | 1.688 (5) | C3—H3A | 0.9800 |
S7—C11 | 1.694 (5) | C3—H3B | 0.9800 |
S8—C11 | 1.740 (4) | C3—H3C | 0.9800 |
S8—C12 | 1.794 (5) | C4—H4A | 0.9800 |
O1—N10 | 1.262 (5) | C4—H4B | 0.9800 |
O2—N10 | 1.241 (5) | C4—H4C | 0.9800 |
O3—N10 | 1.250 (5) | C6—H6A | 0.9800 |
O4—N5 | 1.257 (5) | C6—H6B | 0.9800 |
O5—N5 | 1.242 (5) | C6—H6C | 0.9800 |
O6—N5 | 1.246 (5) | C7—H7A | 0.9800 |
O7—N11 | 1.246 (5) | C7—H7B | 0.9800 |
O8—N11 | 1.234 (5) | C7—H7C | 0.9800 |
O9—N11 | 1.264 (5) | C9—H9A | 0.9800 |
O10—N12 | 1.268 (5) | C9—H9B | 0.9800 |
O11—N12 | 1.252 (5) | C9—H9C | 0.9800 |
O12—N12 | 1.239 (5) | C10—H10A | 0.9800 |
N1—C2 | 1.318 (6) | C10—H10B | 0.9800 |
N1—N2 | 1.420 (5) | C10—H10C | 0.9800 |
N1—C3 | 1.457 (6) | C12—H12A | 0.9800 |
N2—H21 | 0.8800 | C12—H12B | 0.9800 |
N2—H22 | 0.8800 | C12—H12C | 0.9800 |
N3—Cu1—N2 | 94.04 (14) | O2—N10—O3 | 121.1 (4) |
N3—Cu1—S2 | 166.11 (12) | O2—N10—O1 | 120.4 (4) |
N2—Cu1—S2 | 86.27 (11) | O3—N10—O1 | 118.4 (4) |
N3—Cu1—O4 | 91.59 (15) | O8—N11—O7 | 121.4 (4) |
N2—Cu1—O4 | 91.09 (14) | O8—N11—O9 | 119.8 (4) |
S2—Cu1—O4 | 102.29 (11) | O7—N11—O9 | 118.8 (4) |
N3—Cu1—S3 | 85.68 (11) | O12—N12—O11 | 121.4 (4) |
N2—Cu1—S3 | 175.33 (12) | O12—N12—O10 | 119.7 (4) |
S2—Cu1—S3 | 92.88 (4) | O11—N12—O10 | 118.9 (4) |
O4—Cu1—S3 | 93.58 (9) | S1—C1—H1A | 109.5 |
N7—Cu2—N8 | 92.53 (15) | S1—C1—H1B | 109.5 |
N7—Cu2—S7 | 165.60 (12) | H1A—C1—H1B | 109.5 |
N8—Cu2—S7 | 85.68 (11) | S1—C1—H1C | 109.5 |
N7—Cu2—S6 | 86.25 (11) | H1A—C1—H1C | 109.5 |
N8—Cu2—S6 | 178.76 (11) | H1B—C1—H1C | 109.5 |
S7—Cu2—S6 | 95.44 (4) | N1—C2—S2 | 122.5 (3) |
N7—Cu2—O1 | 87.60 (14) | N1—C2—S1 | 115.5 (3) |
N8—Cu2—O1 | 89.83 (14) | S2—C2—S1 | 122.0 (3) |
S7—Cu2—O1 | 106.66 (9) | N1—C3—H3A | 109.5 |
S6—Cu2—O1 | 90.35 (9) | N1—C3—H3B | 109.5 |
C2—S1—C1 | 102.6 (2) | H3A—C3—H3B | 109.5 |
C2—S2—Cu1 | 97.03 (15) | N1—C3—H3C | 109.5 |
C5—S3—Cu1 | 96.68 (16) | H3A—C3—H3C | 109.5 |
C5—S4—C6 | 103.3 (2) | H3B—C3—H3C | 109.5 |
C8—S5—C7 | 102.6 (2) | N4—C4—H4A | 109.5 |
C8—S6—Cu2 | 95.88 (16) | N4—C4—H4B | 109.5 |
C11—S7—Cu2 | 96.78 (15) | H4A—C4—H4B | 109.5 |
C11—S8—C12 | 102.0 (2) | N4—C4—H4C | 109.5 |
N10—O1—Cu2 | 133.0 (3) | H4A—C4—H4C | 109.5 |
N5—O4—Cu1 | 133.9 (3) | H4B—C4—H4C | 109.5 |
C2—N1—N2 | 119.0 (4) | N4—C5—S3 | 122.7 (3) |
C2—N1—C3 | 124.2 (4) | N4—C5—S4 | 115.4 (3) |
N2—N1—C3 | 116.7 (3) | S3—C5—S4 | 121.8 (3) |
N1—N2—Cu1 | 114.4 (3) | S4—C6—H6A | 109.5 |
N1—N2—H21 | 108.6 | S4—C6—H6B | 109.5 |
Cu1—N2—H21 | 108.6 | H6A—C6—H6B | 109.5 |
N1—N2—H22 | 108.6 | S4—C6—H6C | 109.5 |
Cu1—N2—H22 | 108.6 | H6A—C6—H6C | 109.5 |
H21—N2—H22 | 107.6 | H6B—C6—H6C | 109.5 |
N4—N3—Cu1 | 115.0 (3) | S5—C7—H7A | 109.5 |
N4—N3—H31 | 108.5 | S5—C7—H7B | 109.5 |
Cu1—N3—H31 | 108.5 | H7A—C7—H7B | 109.5 |
N4—N3—H32 | 108.5 | S5—C7—H7C | 109.5 |
Cu1—N3—H32 | 108.5 | H7A—C7—H7C | 109.5 |
H31—N3—H32 | 107.5 | H7B—C7—H7C | 109.5 |
C5—N4—N3 | 118.3 (4) | N6—C8—S6 | 123.1 (3) |
C5—N4—C4 | 124.2 (4) | N6—C8—S5 | 114.8 (3) |
N3—N4—C4 | 116.9 (4) | S6—C8—S5 | 122.1 (3) |
O5—N5—O6 | 121.1 (4) | N6—C9—H9A | 109.5 |
O5—N5—O4 | 120.0 (4) | N6—C9—H9B | 109.5 |
O6—N5—O4 | 118.9 (4) | H9A—C9—H9B | 109.5 |
C8—N6—N7 | 117.8 (4) | N6—C9—H9C | 109.5 |
C8—N6—C9 | 124.5 (4) | H9A—C9—H9C | 109.5 |
N7—N6—C9 | 117.3 (4) | H9B—C9—H9C | 109.5 |
N6—N7—Cu2 | 114.5 (3) | N9—C10—H10A | 109.5 |
N6—N7—H71 | 108.6 | N9—C10—H10B | 109.5 |
Cu2—N7—H71 | 108.6 | H10A—C10—H10B | 109.5 |
N6—N7—H72 | 108.6 | N9—C10—H10C | 109.5 |
Cu2—N7—H72 | 108.6 | H10A—C10—H10C | 109.5 |
H71—N7—H72 | 107.6 | H10B—C10—H10C | 109.5 |
N9—N8—Cu2 | 114.5 (3) | N9—C11—S7 | 122.3 (3) |
N9—N8—H81 | 108.6 | N9—C11—S8 | 115.9 (3) |
Cu2—N8—H81 | 108.6 | S7—C11—S8 | 121.8 (3) |
N9—N8—H82 | 108.6 | S8—C12—H12A | 109.5 |
Cu2—N8—H82 | 108.6 | S8—C12—H12B | 109.5 |
H81—N8—H82 | 107.6 | H12A—C12—H12B | 109.5 |
C11—N9—N8 | 117.6 (4) | S8—C12—H12C | 109.5 |
C11—N9—C10 | 125.2 (4) | H12A—C12—H12C | 109.5 |
N8—N9—C10 | 116.6 (3) | H12B—C12—H12C | 109.5 |
N3—Cu1—S2—C2 | −98.7 (5) | S6—Cu2—N7—N6 | 15.0 (3) |
N2—Cu1—S2—C2 | −6.90 (19) | O1—Cu2—N7—N6 | −75.5 (3) |
O4—Cu1—S2—C2 | 83.40 (18) | N7—Cu2—N8—N9 | −149.6 (3) |
S3—Cu1—S2—C2 | 177.70 (16) | S7—Cu2—N8—N9 | 16.1 (3) |
N3—Cu1—S3—C5 | 5.78 (19) | S6—Cu2—N8—N9 | −139 (5) |
N2—Cu1—S3—C5 | 92.5 (13) | O1—Cu2—N8—N9 | 122.8 (3) |
S2—Cu1—S3—C5 | 171.94 (16) | Cu2—N8—N9—C11 | −20.0 (5) |
O4—Cu1—S3—C5 | −85.54 (18) | Cu2—N8—N9—C10 | 167.7 (3) |
N7—Cu2—S6—C8 | −9.96 (19) | Cu2—O1—N10—O2 | 15.7 (6) |
N8—Cu2—S6—C8 | −21 (5) | Cu2—O1—N10—O3 | −166.4 (3) |
S7—Cu2—S6—C8 | −175.62 (16) | N2—N1—C2—S2 | −3.0 (6) |
O1—Cu2—S6—C8 | 77.61 (18) | C3—N1—C2—S2 | 179.8 (3) |
N7—Cu2—S7—C11 | 74.6 (5) | N2—N1—C2—S1 | 178.0 (3) |
N8—Cu2—S7—C11 | −8.69 (19) | C3—N1—C2—S1 | 0.7 (6) |
S6—Cu2—S7—C11 | 170.78 (16) | Cu1—S2—C2—N1 | 7.4 (4) |
O1—Cu2—S7—C11 | −97.22 (18) | Cu1—S2—C2—S1 | −173.6 (2) |
N7—Cu2—O1—N10 | −111.8 (4) | C1—S1—C2—N1 | −175.2 (4) |
N8—Cu2—O1—N10 | −19.2 (4) | C1—S1—C2—S2 | 5.8 (3) |
S7—Cu2—O1—N10 | 66.2 (4) | N3—N4—C5—S3 | −9.1 (6) |
S6—Cu2—O1—N10 | 162.0 (4) | C4—N4—C5—S3 | −179.8 (3) |
N3—Cu1—O4—N5 | 105.5 (4) | N3—N4—C5—S4 | 171.0 (3) |
N2—Cu1—O4—N5 | 11.4 (4) | C4—N4—C5—S4 | 0.4 (6) |
S2—Cu1—O4—N5 | −75.0 (4) | Cu1—S3—C5—N4 | −0.1 (4) |
S3—Cu1—O4—N5 | −168.7 (4) | Cu1—S3—C5—S4 | 179.7 (2) |
C2—N1—N2—Cu1 | −4.4 (5) | C6—S4—C5—N4 | 176.2 (3) |
C3—N1—N2—Cu1 | 173.1 (3) | C6—S4—C5—S3 | −3.7 (4) |
N3—Cu1—N2—N1 | 173.2 (3) | N7—N6—C8—S6 | 5.9 (6) |
S2—Cu1—N2—N1 | 7.1 (3) | C9—N6—C8—S6 | 178.8 (4) |
O4—Cu1—N2—N1 | −95.2 (3) | N7—N6—C8—S5 | −173.9 (3) |
S3—Cu1—N2—N1 | 86.8 (14) | C9—N6—C8—S5 | −1.0 (6) |
N2—Cu1—N3—N4 | 173.4 (3) | Cu2—S6—C8—N6 | 5.2 (4) |
S2—Cu1—N3—N4 | −95.8 (5) | Cu2—S6—C8—S5 | −175.0 (3) |
O4—Cu1—N3—N4 | 82.2 (3) | C7—S5—C8—N6 | −174.7 (4) |
S3—Cu1—N3—N4 | −11.3 (3) | C7—S5—C8—S6 | 5.5 (4) |
Cu1—N3—N4—C5 | 14.6 (5) | N8—N9—C11—S7 | 11.7 (6) |
Cu1—N3—N4—C4 | −174.1 (3) | C10—N9—C11—S7 | −176.7 (3) |
Cu1—O4—N5—O5 | −9.9 (6) | N8—N9—C11—S8 | −170.5 (3) |
Cu1—O4—N5—O6 | 171.7 (3) | C10—N9—C11—S8 | 1.1 (6) |
C8—N6—N7—Cu2 | −15.9 (5) | Cu2—S7—C11—N9 | 1.2 (4) |
C9—N6—N7—Cu2 | 170.7 (3) | Cu2—S7—C11—S8 | −176.6 (2) |
N8—Cu2—N7—N6 | −165.2 (3) | C12—S8—C11—N9 | 175.4 (3) |
S7—Cu2—N7—N6 | 112.3 (5) | C12—S8—C11—S7 | −6.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O5 | 0.88 | 2.21 | 2.860 (5) | 131 |
N2—H22···O7 | 0.88 | 2.11 | 2.817 (5) | 136 |
N3—H31···O3i | 0.88 | 2.07 | 2.776 (5) | 137 |
N3—H32···O11 | 0.88 | 2.05 | 2.881 (5) | 156 |
N7—H71···O9 | 0.88 | 1.89 | 2.768 (5) | 174 |
N7—H72···O6ii | 0.88 | 2.10 | 2.807 (5) | 137 |
N8—H81···O10 | 0.88 | 2.01 | 2.842 (5) | 157 |
N8—H82···O2 | 0.88 | 2.08 | 2.894 (5) | 154 |
C6—H6A···O8iii | 0.98 | 2.47 | 3.295 (6) | 141 |
C7—H7A···O12iv | 0.98 | 2.48 | 3.247 (6) | 135 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(NO3)(C3H8N2S2)2]NO3 |
Mr | 460.03 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 11.2716 (4), 12.1741 (4), 13.8970 (5) |
α, β, γ (°) | 115.449 (3), 100.734 (3), 97.258 (3) |
V (Å3) | 1645.39 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.87 |
Crystal size (mm) | 0.40 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.634, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25371, 7555, 5675 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.165, 1.09 |
No. of reflections | 7555 |
No. of parameters | 423 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.15, −0.95 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).
Cu1—S2 | 2.2502 (12) | Cu2—S6 | 2.2724 (12) |
Cu1—S3 | 2.2759 (12) | Cu2—S7 | 2.2557 (12) |
Cu1—O4 | 2.271 (3) | Cu2—O1 | 2.334 (3) |
Cu1—N2 | 2.017 (4) | Cu2—N7 | 1.990 (4) |
Cu1—N3 | 2.008 (4) | Cu2—N8 | 2.004 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O5 | 0.88 | 2.21 | 2.860 (5) | 131 |
N2—H22···O7 | 0.88 | 2.11 | 2.817 (5) | 136 |
N3—H31···O3i | 0.88 | 2.07 | 2.776 (5) | 137 |
N3—H32···O11 | 0.88 | 2.05 | 2.881 (5) | 156 |
N7—H71···O9 | 0.88 | 1.89 | 2.768 (5) | 174 |
N7—H72···O6ii | 0.88 | 2.10 | 2.807 (5) | 137 |
N8—H81···O10 | 0.88 | 2.01 | 2.842 (5) | 157 |
N8—H82···O2 | 0.88 | 2.08 | 2.894 (5) | 154 |
C6—H6A···O8iii | 0.98 | 2.47 | 3.295 (6) | 141 |
C7—H7A···O12iv | 0.98 | 2.48 | 3.247 (6) | 135 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y+2, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: benudey@yahoo.com.
Acknowledgements
The University Grants Commission, Bangladesh, is thanked for a fellowship to BG. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Ali, M. A., Mirza, A. H., Yee, C. Y., Rahgeni, H. & Bernhardt, P. V. (2011). Polyhedron, 30, 542–548. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. Web of Science CrossRef PubMed CAS Google Scholar
Hazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a continuation of systematic studies into the synthesis, characterization and biological activities of dithiocarbazates and their metal complexes (Hazari et al., 2012), crystals of the title complex, (I), were isolated and characterized crystallographically.
Complex (I), Fig. 1, comprises two independent complex cations and two nitrate anions in the asymmetric unit, and represents a low symmetry (P1; Z = 4) polymorph of the previously reported triclinic form (P1, Z = 2; Ali et al., 2011). The CuII atom is coordinated by a N2S2 donor set provided by two bidentate ligands and an O atom derived from a monodentate nitrate ligand, Table 1. The resulting N2S2O coordination geometry for the Cu1 atom is relatively close to a square pyramid as quantified by the value of τ = 0.15, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The value for the Cu2 atom, i.e. τ = 0.22, indicates a small deviation along the path towards trigonal bipyramidal. The τ value for the previously described polymorph of 0.17 (Ali et al., 2011) is intermediate between those calculated for the Cu atoms in (I). The primary difference between the cations comprising the asymmetric unit of (I) is found in the relative orientations of the coordinated nitrate groups, which are directed to opposite sides of the molecule. The orientation of the nitrate coordinated to the Cu2 atom matches that found in the literature polymorph. The three independent molecules are as illustrated in the overlay diagram, Fig. 2.
The crystal packing features significant hydrogen bonding interactions as expected from the composition. Thus, each amino-H atom forms a hydrogen bond to a nitrate-O atom, and each nitrate group atom participates in two N—H···O hydrogen bonds, Table 2. The result is the formation of a supramolecular layer along [110], Fig. 3. The layers are connected along the c axis by C–H···O interactions involving nitrate-O atoms not involved in N—H···O hydrogen bonds nor coordinated to a Cu centre, Fig. 4 and Table 2.