metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-diiso­propyl­phosphanido-κ2P:P)bis­­[hydrido(triiso­propyl­phosphane-κP)platinum(II)]

aInstitut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
*Correspondence e-mail: h.braunschweig@mail.uni-wuerzburg.de

(Received 11 April 2012; accepted 18 May 2012; online 26 May 2012)

In the centrosymmetric mol­ecular structure of the title compound [Pt2(C6H14P)2H2(C9H21P)2], each PtII atom is bound on one side to a phosphane ligand (PiPr3) and a hydrido ligand. On the other side, it is bound to two phosphanide ligands (μ-PiPr2), which engage a bridging position between the two PtII atoms, forming a distorted square-planar structure motif. The Pt⋯Pt distance is 3.6755 (2) Å. A comparable mol­ecular structure was observed for bis­(μ-di-tert-butyl­phosphanido)bis­[hydrido(triethyl­phosphane)platinum(II)] [Itazaki et al. (2004[Itazaki, M., Nishihara, Y. & Osakada, K. (2004). Organometallics, 23, 1610-1621.]). Organometallics, 23, 1610–1621].

Related literature

For the syntheses of similar phosphido-bridged complexes of platinum(II) with phosphine ligands, see: Itazaki et al. (2004)[Itazaki, M., Nishihara, Y. & Osakada, K. (2004). Organometallics, 23, 1610-1621.] or with other ligands such as carbonyl, see: Albinati et al. (2008[Albinati, A., Leoni, P., Marchetti, F., Marchetti, L., Pasquali, M. & Rizzato, S. (2008). Eur. J. Inorg. Chem. pp. 4092-4100.]). For Pt—H bond lengths in related structures, see: Chiang et al. (1984[Chiang, M. Y., Bau, R., Minghetti, G., Bandini, A. L., Banditelli, G. & Koetzle, T. F. (1984). Inorg. Chem. 23, 122-124.]); Knobler et al. (1983[Knobler, C. B., Kaesz, H. D., Minghetti, G., Bandini, A. L. & Banditelli, F. B. (1983). Inorg. Chem. 22, 2324-2331.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt2(C6H14P)2H2(C9H21P)2]

  • Mr = 946.94

  • Monoclinic, P 21 /n

  • a = 8.8301 (3) Å

  • b = 14.8153 (5) Å

  • c = 14.1688 (5) Å

  • β = 90.097 (2)°

  • V = 1853.57 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.73 mm−1

  • T = 100 K

  • 0.53 × 0.13 × 0.11 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.360, Tmax = 0.745

  • 38282 measured reflections

  • 3943 independent reflections

  • 3478 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.038

  • S = 1.03

  • 3943 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2010[Bruker (2010). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Bis[µ-di(isopropyl)phosphino]-di(hydrido)-bis[tri(isopropyl)phosphine]-di(platinum), bridged by the µ-PiPr2 ligands, displays a slightly distorted square-planar geometry. The two platinum centers show a Pt(1)–Pt(1i) distance of 3.6755 (2) Å. The Pt–Pt distance is comparable to that in bis[µ-di(tert-butyl)phosphino]-di(hydrido)-bis[tri(ethyl)phosphine]-di(platinum) [Pt2H2(µ-PtBu2)2(PEt3)2] (3.646 Å).

The bond angles P(13)–Pt(1)–P(13i) [77.47 (3)°] and Pt(1)–P(13)–Pt(1i) [102.53 (3)°] are slightly out of range of the structural parameters of the complexes without Pt–Pt bonding from Itazaki et al. (2004) [P–Pt–P 74.6–77.2° and Pt–P–Pt 102.8–105.4°]. This could be due to the less sterical hindrance of the iso-propyl groups by contrast with the tert-butyl groups in the reference substance [Pt2H2(µ-PtBu2)2(PEt3)2].

Chiang et al. (1984) reported the bond length of a terminal Pt–H bond determined by neutron diffraction method. They found for the Pt–H bond on a five coordinate platinum centre a bond length of 1.610 (2) Å in the compound [Pt2H3(Ph2PCH2CH2PPh2)2]+[BPh4]-. In the title compound [Pt2H2(µ-PiPr2)2(PiPr3)2] [1.57 (3) Å] the bonding disctance of Pt–H is 2.5% shorter than in the neutron experiment of Chiang et al., due to the smaller coordination number of four in the former species.

The group of Knobler et al. (1983) also determined the Pt–H bond length by X-Ray diffraction in [Pt2H3(Ph2PCH2CH2PPh2)2]+[BPh4]- to be 1.527 Å, however without further refinement.

The bonding dictances Pt–P in trans-position to the hydrido ligand are with 2.3773 (7) Å longer than the bonding distances in trans-position to the phosphine ligand 2.3343 (7) Å.

Related literature top

For the syntheses of similar phosphido-bridged complexes of platinum(II) with phosphine ligands, see: Itazaki et al. (2004) or with other ligands such as carbonyl, see: Albinati et al. (2008). For Pt—H bond lengths in related structures, see: Chiang et al. (1984); Knobler et al. (1983).

Experimental top

Bis(tri-iso-propylphosphine)platinum (50.0 mg, 0.09 mmol) dissolved in 1 ml benzene was added to a solution of dichloro(2,3,5,6-tetramethylphenyl)borane (29.5 mg, 0.09 mmol) in 1 ml benzene. The solvent was removed under reduced pressure and the obtained dark brown residue was disolved in hexanes. The title compound was obtained as a off-white solid. Colourless crystals suitable for X-ray analysis were grown from a hexanes solution at 238 K.

Refinement top

The H atoms were placed at idealized positions and treatet as riding atoms: C–H = 0.98 Å (CH3), 1.00 Å (aliphatic H-atoms). Uiso(H) values were fixed at 1.5 times (for primary H atoms) and 1.2 times (tertiary H atoms) Ueq of the attached C atoms.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2010); data reduction: SAINT-Plus (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme and displacement ellipsoides for the non-H atoms at the 50% probability level. Hydrogen atoms are omitted for clarity.
Bis(µ-diisopropylphosphanido- κ2P:P)bis[hydrido(triisopropylphosphane- κP)platinum(II)] top
Crystal data top
[Pt2(C6H14P)2H2(C9H21P)2]F(000) = 936
Mr = 946.94Dx = 1.697 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8162 reflections
a = 8.8301 (3) Åθ = 2.7–26.7°
b = 14.8153 (5) ŵ = 7.73 mm1
c = 14.1688 (5) ÅT = 100 K
β = 90.097 (2)°Needle, colourless
V = 1853.57 (11) Å30.53 × 0.13 × 0.11 mm
Z = 2
Data collection top
Bruker X8 APEXII
diffractometer
3943 independent reflections
Radiation source: rotating anode3478 reflections with I > 2σ(I)
Multi-layer mirror monochromatorRint = 0.051
Detector resolution: 8.333 pixels mm-1θmax = 26.8°, θmin = 2.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1818
Tmin = 0.360, Tmax = 0.745l = 1717
38282 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0141P)2 + 0.9947P]
where P = (Fo2 + 2Fc2)/3
3943 reflections(Δ/σ)max = 0.009
177 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Pt2(C6H14P)2H2(C9H21P)2]V = 1853.57 (11) Å3
Mr = 946.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.8301 (3) ŵ = 7.73 mm1
b = 14.8153 (5) ÅT = 100 K
c = 14.1688 (5) Å0.53 × 0.13 × 0.11 mm
β = 90.097 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
3943 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3478 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.745Rint = 0.051
38282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.72 e Å3
3943 reflectionsΔρmin = 0.66 e Å3
177 parameters
Special details top

Experimental. The crystal was immersed in a film of perfluoropolyether oil, mounted on a polyimide microloop (MicroMounts of MiTeGen) and transferred to stream of cold nitrogen (Oxford Cryostream 700).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.068246 (11)1.032840 (7)0.882448 (6)0.00916 (4)
P30.15611 (8)0.99092 (5)0.73662 (5)0.01104 (15)
C40.0188 (3)1.01911 (19)0.64139 (19)0.0155 (6)
H40.05700.99250.58110.019*
C50.1344 (3)0.9764 (2)0.6632 (2)0.0230 (7)
H5A0.17170.99930.72380.034*
H5B0.12330.91070.66670.034*
H5C0.20670.99180.61320.034*
C60.0005 (3)1.1205 (2)0.6271 (2)0.0218 (7)
H6A0.08181.13180.58220.033*
H6B0.09511.14570.60230.033*
H6C0.02341.14910.68760.033*
C70.3257 (3)1.05748 (19)0.70284 (18)0.0141 (6)
H70.28881.12090.69530.017*
C80.3981 (3)1.0330 (2)0.60752 (19)0.0195 (7)
H8A0.47681.07730.59210.029*
H8B0.32021.03340.55810.029*
H8C0.44340.97270.61160.029*
C90.4449 (3)1.0616 (2)0.7817 (2)0.0199 (7)
H9A0.49741.00340.78590.030*
H9B0.39511.07470.84190.030*
H9C0.51841.10930.76750.030*
C100.1983 (3)0.86919 (18)0.71777 (19)0.0156 (6)
H100.12090.83610.75580.019*
C110.3510 (3)0.8423 (2)0.7605 (2)0.0212 (7)
H11A0.35870.77630.76270.032*
H11B0.35910.86670.82460.032*
H11C0.43310.86660.72150.032*
C120.1825 (4)0.8318 (2)0.6177 (2)0.0235 (7)
H12A0.25520.86200.57610.035*
H12B0.07940.84270.59460.035*
H12C0.20280.76680.61810.035*
P130.00800 (7)0.90365 (5)0.97455 (5)0.01004 (14)
C140.1496 (3)0.82851 (18)0.93640 (18)0.0141 (6)
H140.16860.78580.98970.017*
C150.2950 (3)0.8827 (2)0.9230 (2)0.0220 (7)
H15A0.28090.92670.87210.033*
H15B0.31940.91450.98170.033*
H15C0.37820.84180.90660.033*
C160.1193 (3)0.7706 (2)0.8494 (2)0.0197 (7)
H16A0.20150.72680.84150.030*
H16B0.02310.73850.85730.030*
H16C0.11390.80940.79340.030*
C170.1654 (3)0.82156 (18)0.99243 (18)0.0129 (6)
H170.19240.79600.92930.015*
C180.1266 (3)0.7430 (2)1.0573 (2)0.0222 (7)
H18A0.21470.70321.06330.033*
H18B0.04140.70901.03070.033*
H18C0.09870.76621.11970.033*
C190.3042 (3)0.8713 (2)1.0303 (2)0.0216 (7)
H19A0.28100.89711.09230.032*
H19B0.33180.91990.98660.032*
H19C0.38900.82901.03620.032*
H20.099 (3)1.131 (2)0.845 (2)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01140 (6)0.00952 (6)0.00656 (6)0.00047 (4)0.00126 (4)0.00011 (4)
P30.0133 (4)0.0122 (4)0.0076 (3)0.0013 (3)0.0004 (3)0.0003 (3)
C40.0205 (16)0.0180 (16)0.0081 (13)0.0010 (12)0.0003 (11)0.0021 (11)
C50.0195 (17)0.0312 (19)0.0182 (15)0.0033 (14)0.0068 (13)0.0003 (13)
C60.0242 (17)0.0225 (18)0.0187 (15)0.0058 (14)0.0075 (12)0.0020 (13)
C70.0161 (15)0.0142 (15)0.0118 (14)0.0016 (12)0.0010 (11)0.0002 (11)
C80.0206 (16)0.0240 (18)0.0140 (15)0.0027 (13)0.0056 (12)0.0024 (12)
C90.0155 (16)0.0264 (17)0.0179 (15)0.0036 (13)0.0011 (12)0.0028 (13)
C100.0203 (16)0.0105 (14)0.0160 (14)0.0000 (12)0.0059 (12)0.0014 (12)
C110.0253 (17)0.0175 (17)0.0208 (16)0.0049 (13)0.0050 (13)0.0028 (13)
C120.0338 (19)0.0163 (16)0.0204 (16)0.0022 (14)0.0037 (13)0.0076 (13)
P130.0118 (4)0.0099 (3)0.0085 (3)0.0007 (3)0.0010 (3)0.0005 (3)
C140.0178 (15)0.0125 (15)0.0121 (14)0.0047 (12)0.0017 (11)0.0003 (11)
C150.0154 (16)0.0255 (18)0.0250 (16)0.0012 (13)0.0018 (12)0.0051 (14)
C160.0186 (16)0.0195 (17)0.0209 (15)0.0076 (13)0.0024 (12)0.0062 (13)
C170.0150 (15)0.0111 (15)0.0125 (13)0.0039 (11)0.0023 (11)0.0006 (11)
C180.0283 (18)0.0182 (17)0.0201 (16)0.0104 (14)0.0030 (13)0.0050 (13)
C190.0155 (16)0.0229 (17)0.0265 (17)0.0036 (13)0.0028 (12)0.0021 (14)
Geometric parameters (Å, º) top
Pt1—P32.2940 (7)C11—H11A0.9800
Pt1—P13i2.3343 (7)C11—H11B0.9800
Pt1—P132.3773 (7)C11—H11C0.9800
Pt1—H21.57 (3)C12—H12A0.9800
P3—C71.857 (3)C12—H12B0.9800
P3—C41.860 (3)C12—H12C0.9800
P3—C101.861 (3)P13—C141.862 (3)
C4—C61.524 (4)P13—C171.864 (3)
C4—C51.526 (4)P13—Pt1i2.3343 (7)
C4—H41.0000C14—C161.526 (4)
C5—H5A0.9800C14—C151.526 (4)
C5—H5B0.9800C14—H141.0000
C5—H5C0.9800C15—H15A0.9800
C6—H6A0.9800C15—H15B0.9800
C6—H6B0.9800C15—H15C0.9800
C6—H6C0.9800C16—H16A0.9800
C7—C91.534 (4)C16—H16B0.9800
C7—C81.538 (4)C16—H16C0.9800
C7—H71.0000C17—C181.523 (4)
C8—H8A0.9800C17—C191.527 (4)
C8—H8B0.9800C17—H171.0000
C8—H8C0.9800C18—H18A0.9800
C9—H9A0.9800C18—H18B0.9800
C9—H9B0.9800C18—H18C0.9800
C9—H9C0.9800C19—H19A0.9800
C10—C121.529 (4)C19—H19B0.9800
C10—C111.530 (4)C19—H19C0.9800
C10—H101.0000
P3—Pt1—P13i171.67 (3)C10—C11—H11A109.5
P3—Pt1—P13110.66 (2)C10—C11—H11B109.5
P13i—Pt1—P1377.47 (3)H11A—C11—H11B109.5
P3—Pt1—H283.5 (12)C10—C11—H11C109.5
P13i—Pt1—H288.4 (12)H11A—C11—H11C109.5
P13—Pt1—H2165.8 (12)H11B—C11—H11C109.5
C7—P3—C4102.65 (13)C10—C12—H12A109.5
C7—P3—C10108.41 (13)C10—C12—H12B109.5
C4—P3—C10104.12 (13)H12A—C12—H12B109.5
C7—P3—Pt1111.26 (9)C10—C12—H12C109.5
C4—P3—Pt1111.81 (9)H12A—C12—H12C109.5
C10—P3—Pt1117.37 (9)H12B—C12—H12C109.5
C6—C4—C5110.0 (2)C14—P13—C17101.90 (12)
C6—C4—P3112.7 (2)C14—P13—Pt1i106.05 (9)
C5—C4—P3109.69 (19)C17—P13—Pt1i111.17 (9)
C6—C4—H4108.1C14—P13—Pt1119.34 (9)
C5—C4—H4108.1C17—P13—Pt1115.63 (9)
P3—C4—H4108.1Pt1i—P13—Pt1102.53 (3)
C4—C5—H5A109.5C16—C14—C15110.1 (2)
C4—C5—H5B109.5C16—C14—P13116.01 (19)
H5A—C5—H5B109.5C15—C14—P13110.48 (19)
C4—C5—H5C109.5C16—C14—H14106.6
H5A—C5—H5C109.5C15—C14—H14106.6
H5B—C5—H5C109.5P13—C14—H14106.6
C4—C6—H6A109.5C14—C15—H15A109.5
C4—C6—H6B109.5C14—C15—H15B109.5
H6A—C6—H6B109.5H15A—C15—H15B109.5
C4—C6—H6C109.5C14—C15—H15C109.5
H6A—C6—H6C109.5H15A—C15—H15C109.5
H6B—C6—H6C109.5H15B—C15—H15C109.5
C9—C7—C8111.3 (2)C14—C16—H16A109.5
C9—C7—P3112.72 (19)C14—C16—H16B109.5
C8—C7—P3115.95 (19)H16A—C16—H16B109.5
C9—C7—H7105.3C14—C16—H16C109.5
C8—C7—H7105.3H16A—C16—H16C109.5
P3—C7—H7105.3H16B—C16—H16C109.5
C7—C8—H8A109.5C18—C17—C19109.8 (2)
C7—C8—H8B109.5C18—C17—P13114.37 (19)
H8A—C8—H8B109.5C19—C17—P13109.31 (19)
C7—C8—H8C109.5C18—C17—H17107.7
H8A—C8—H8C109.5C19—C17—H17107.7
H8B—C8—H8C109.5P13—C17—H17107.7
C7—C9—H9A109.5C17—C18—H18A109.5
C7—C9—H9B109.5C17—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C7—C9—H9C109.5C17—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C12—C10—C11110.6 (2)C17—C19—H19A109.5
C12—C10—P3117.8 (2)C17—C19—H19B109.5
C11—C10—P3111.9 (2)H19A—C19—H19B109.5
C12—C10—H10105.1C17—C19—H19C109.5
C11—C10—H10105.1H19A—C19—H19C109.5
P3—C10—H10105.1H19B—C19—H19C109.5
P13i—Pt1—P3—C731.4 (2)C7—P3—C10—C1148.1 (2)
P13—Pt1—P3—C7135.55 (10)C4—P3—C10—C11156.87 (19)
P13i—Pt1—P3—C482.7 (2)Pt1—P3—C10—C1179.0 (2)
P13—Pt1—P3—C4110.32 (10)P3—Pt1—P13—C1465.19 (10)
P13i—Pt1—P3—C10157.11 (18)P13i—Pt1—P13—C14116.73 (10)
P13—Pt1—P3—C109.88 (11)P3—Pt1—P13—C1756.96 (10)
C7—P3—C4—C651.8 (2)P13i—Pt1—P13—C17121.13 (10)
C10—P3—C4—C6164.7 (2)P3—Pt1—P13—Pt1i178.09 (2)
Pt1—P3—C4—C667.6 (2)P13i—Pt1—P13—Pt1i0.0
C7—P3—C4—C5174.7 (2)C17—P13—C14—C1657.0 (2)
C10—P3—C4—C572.3 (2)Pt1i—P13—C14—C16173.41 (19)
Pt1—P3—C4—C555.3 (2)Pt1—P13—C14—C1671.7 (2)
C4—P3—C7—C9167.9 (2)C17—P13—C14—C15176.81 (19)
C10—P3—C7—C982.4 (2)Pt1i—P13—C14—C1560.41 (19)
Pt1—P3—C7—C948.1 (2)Pt1—P13—C14—C1554.5 (2)
C4—P3—C7—C862.2 (2)C14—P13—C17—C1853.1 (2)
C10—P3—C7—C847.5 (2)Pt1i—P13—C17—C1859.6 (2)
Pt1—P3—C7—C8178.02 (18)Pt1—P13—C17—C18175.91 (17)
C7—P3—C10—C1281.7 (2)C14—P13—C17—C19176.60 (19)
C4—P3—C10—C1227.1 (3)Pt1i—P13—C17—C1963.98 (19)
Pt1—P3—C10—C12151.27 (19)Pt1—P13—C17—C1952.4 (2)
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Pt2(C6H14P)2H2(C9H21P)2]
Mr946.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.8301 (3), 14.8153 (5), 14.1688 (5)
β (°) 90.097 (2)
V3)1853.57 (11)
Z2
Radiation typeMo Kα
µ (mm1)7.73
Crystal size (mm)0.53 × 0.13 × 0.11
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.360, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
38282, 3943, 3478
Rint0.051
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.038, 1.03
No. of reflections3943
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.66

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support by the DFG is gratefully acknowledged.

References

First citationAlbinati, A., Leoni, P., Marchetti, F., Marchetti, L., Pasquali, M. & Rizzato, S. (2008). Eur. J. Inorg. Chem. pp. 4092–4100.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiang, M. Y., Bau, R., Minghetti, G., Bandini, A. L., Banditelli, G. & Koetzle, T. F. (1984). Inorg. Chem. 23, 122–124.  CSD CrossRef CAS Web of Science Google Scholar
First citationItazaki, M., Nishihara, Y. & Osakada, K. (2004). Organometallics, 23, 1610–1621.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnobler, C. B., Kaesz, H. D., Minghetti, G., Bandini, A. L. & Banditelli, F. B. (1983). Inorg. Chem. 22, 2324–2331.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds