organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Meth­­oxy­benzyl­­idene)amino]­benzene­sulfonamide

aDepartment of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa, and bDepartment of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: idemudiaog@yahoo.com

(Received 18 April 2012; accepted 26 April 2012; online 2 May 2012)

The title Schiff base compound, C14H14N2O3S, is non-planar, with a dihedral angle of 24.16 (7)° between the benzene rings. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into a layer parallel to (011). Intra- and inter­layer C—H⋯O inter­actions and ππ inter­actions [centroid–centroid distances = 3.8900 (9) and 3.9355 (8) Å] are also present.

Related literature

For general background to the applications of sulfanilamide Schiff bases, see: Gupta et al. (2003[Gupta, M. K., Singh, H. L., Varshney, S. & Varshney, A. K. (2003). Bioinorg. Chem. Appl. 1, 309-320.]); Khalil et al. (2009[Khalil, R. A., Jalil, A. H. & Abd-Alrazzak, A. Y. (2009). Iran. Chem. Soc. 6, 345-352.]); Nagpal & Singh (2004[Nagpal, P. & Singh, R. V. (2004). Appl. Organomet. Chem. 18, 221-226.]); Sharaby (2007[Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271-1278.]); Wu et al. (2004[Wu, C. Y., Chen, L. H., Hwang, W. S., Chen, H. S., Chen, H. S. & Hung, C. H. (2004). J. Organomet. Chem. 689, 2192-2200.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O3S

  • Mr = 290.33

  • Monoclinic, P 21 /c

  • a = 16.3315 (5) Å

  • b = 11.1597 (3) Å

  • c = 7.6876 (3) Å

  • β = 100.661 (1)°

  • V = 1376.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.60 × 0.33 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.90, Tmax = 0.97

  • 10501 measured reflections

  • 3383 independent reflections

  • 2821 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.08

  • 3383 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Biological applications of sulfa compounds either alone or as metal complexes are well known (Gupta et al., 2003; Nagpal & Singh, 2004). Their chelating powers towards metal ions tend to increase on forming a Schiff base by way of reaction with a carbonyl (Khalil et al., 2009; Sharaby, 2007; Wu et al., 2004). Herein, we report a new sulfanilamide Schiff base (Fig. 1), as part of our look at developing better chelating ligands from biologically active amine compounds.

The least-squares planes through the phenyl rings of the benzenesulfonamide and methoxybenzaldehyde groups have a dihedral angle of 24.16 (7)°. In the crystal, the molecules are stacked along the c axis and linked by N—H···O and N—H···N hydrogen bonds (Table 1 and Fig. 2) into a layer parallel to (0 1 1) (Fig. 3). The least-squares planes through adjacent two methoxybenzaldehyde phenyl rings (C11–C16) are almost parallel with a dihedral angle of 3.97° and a centroid-to-centroid distance of 3.8900 (9) Å. The centroid-to-centroid distance between adjacent two benzenesulfonamide phenyl rings (C21–C26) is 3.9355 (8) Å. C22—H22···π interaction occurs with the adjacent C21–C26 ring (H···Cg distance = 2.81 Å). Intra- and interlayer C—H···O interactions are also observed.

Related literature top

For general background to the applications of sulfanilamide Schiff bases, see: Gupta et al. (2003); Khalil et al. (2009); Nagpal & Singh (2004); Sharaby (2007); Wu et al. (2004).

Experimental top

A mixture of (4-aminobenzenesulfonamide)sulfadiazine and 4-methoxybenzaldehyde (anisaldehyde) (molar ratio 1:1) in methanol was refluxed for 15 h. The resultant pale yellow precipitate was isolated by filtration and recrystalized from methanol. Yield 68% and melting point 199–201°C. Single crystals suitable for X-ray analysis were obtained from methanol by slow evaporation at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 (CH), 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). N-bound H atoms were located on a difference Fourier map and refined as riding with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonds in the title compound. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+2, -z+1; (iii) -x+1, y-1/2, -z+3/2; (iv) x-1, y, z-1.]
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along [0 1 0].
4-[(4-Methoxybenzylidene)amino]benzenesulfonamide top
Crystal data top
C14H14N2O3SF(000) = 608
Mr = 290.33Dx = 1.401 Mg m3
Monoclinic, P21/cMelting point: 473.15 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.3315 (5) ÅCell parameters from 118 reflections
b = 11.1597 (3) Åθ = 3.1–29.3°
c = 7.6876 (3) ŵ = 0.24 mm1
β = 100.661 (1)°T = 200 K
V = 1376.92 (8) Å3Platelet, yellow
Z = 40.60 × 0.33 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3383 independent reflections
Radiation source: sealed tube2821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1414
Tmin = 0.90, Tmax = 0.97l = 108
10501 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.7392P]
where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H14N2O3SV = 1376.92 (8) Å3
Mr = 290.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.3315 (5) ŵ = 0.24 mm1
b = 11.1597 (3) ÅT = 200 K
c = 7.6876 (3) Å0.60 × 0.33 × 0.12 mm
β = 100.661 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3383 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2821 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.97Rint = 0.017
10501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
3383 reflectionsΔρmin = 0.39 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.663198 (19)0.87003 (3)0.83688 (5)0.02211 (10)
O10.04751 (7)0.67929 (13)0.0325 (2)0.0479 (4)
O20.68589 (6)0.74895 (9)0.88958 (16)0.0306 (3)
O30.66935 (7)0.96150 (10)0.96956 (16)0.0333 (3)
N10.31032 (7)0.85378 (10)0.45630 (17)0.0231 (2)
N20.72148 (7)0.90797 (11)0.69963 (17)0.0248 (3)
H2A0.7190.85590.61720.03*
H2B0.71410.97920.66280.03*
C10.27140 (8)0.75396 (13)0.4333 (2)0.0250 (3)
H10.29860.68430.48670.03*
C20.10221 (11)0.7766 (2)0.0293 (3)0.0553 (6)
H2C0.07560.82920.10440.083*
H2D0.11420.82210.07210.083*
H2E0.15430.74510.09790.083*
C110.18743 (8)0.74102 (13)0.3295 (2)0.0257 (3)
C120.15750 (9)0.62521 (14)0.2867 (2)0.0319 (3)
H120.19140.5580.32750.038*
C130.07929 (10)0.60763 (15)0.1859 (2)0.0365 (4)
H130.05980.52870.15580.044*
C140.02902 (9)0.70602 (16)0.1285 (2)0.0335 (4)
C150.05726 (9)0.82138 (15)0.1709 (2)0.0344 (4)
H150.02280.88840.13210.041*
C160.13644 (9)0.83808 (14)0.2707 (2)0.0310 (3)
H160.15610.91710.29930.037*
C210.39382 (8)0.85383 (12)0.55004 (19)0.0206 (3)
C220.44881 (8)0.75989 (12)0.5357 (2)0.0225 (3)
H220.430.69230.46430.027*
C230.53057 (8)0.76496 (12)0.6253 (2)0.0223 (3)
H230.56750.70020.61760.027*
C240.55836 (8)0.86504 (11)0.72618 (19)0.0199 (3)
C250.50485 (9)0.96019 (12)0.7391 (2)0.0244 (3)
H250.52441.02870.80770.029*
C260.42248 (8)0.95441 (12)0.6508 (2)0.0246 (3)
H260.38571.01920.65920.03*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01897 (16)0.02111 (17)0.02420 (19)0.00156 (11)0.00138 (12)0.00123 (13)
O10.0217 (5)0.0634 (9)0.0533 (9)0.0056 (5)0.0072 (5)0.0087 (7)
O20.0250 (5)0.0263 (5)0.0377 (7)0.0009 (4)0.0015 (4)0.0113 (5)
O30.0301 (5)0.0363 (6)0.0304 (6)0.0027 (4)0.0023 (4)0.0097 (5)
N10.0194 (5)0.0234 (6)0.0252 (6)0.0002 (4)0.0007 (4)0.0015 (5)
N20.0224 (5)0.0197 (5)0.0314 (7)0.0027 (4)0.0029 (5)0.0025 (5)
C10.0216 (6)0.0235 (6)0.0284 (8)0.0005 (5)0.0010 (5)0.0029 (5)
C20.0239 (8)0.0838 (16)0.0532 (13)0.0076 (9)0.0063 (8)0.0003 (12)
C110.0198 (6)0.0279 (7)0.0282 (8)0.0023 (5)0.0013 (5)0.0010 (6)
C120.0263 (7)0.0282 (7)0.0391 (9)0.0030 (6)0.0005 (6)0.0016 (7)
C130.0282 (7)0.0346 (8)0.0440 (10)0.0092 (6)0.0002 (7)0.0053 (7)
C140.0188 (6)0.0477 (9)0.0323 (9)0.0032 (6)0.0005 (6)0.0036 (7)
C150.0226 (7)0.0388 (9)0.0398 (10)0.0041 (6)0.0008 (6)0.0013 (7)
C160.0234 (7)0.0292 (7)0.0388 (9)0.0004 (6)0.0014 (6)0.0009 (7)
C210.0191 (6)0.0199 (6)0.0217 (7)0.0003 (5)0.0013 (5)0.0036 (5)
C220.0218 (6)0.0191 (6)0.0259 (7)0.0024 (5)0.0026 (5)0.0029 (5)
C230.0202 (6)0.0193 (6)0.0274 (7)0.0002 (5)0.0045 (5)0.0008 (5)
C240.0183 (5)0.0192 (6)0.0213 (7)0.0016 (4)0.0014 (5)0.0022 (5)
C250.0254 (6)0.0176 (6)0.0281 (7)0.0009 (5)0.0000 (5)0.0023 (5)
C260.0238 (6)0.0190 (6)0.0297 (8)0.0026 (5)0.0015 (5)0.0011 (5)
Geometric parameters (Å, º) top
S1—O31.4333 (11)C12—H120.95
S1—O21.4393 (10)C13—C141.393 (2)
S1—N21.6032 (13)C13—H130.95
S1—C241.7663 (13)C14—C151.386 (2)
O1—C141.3617 (17)C15—C161.389 (2)
O1—C21.430 (2)C15—H150.95
N1—C11.2786 (18)C16—H160.95
N1—C211.4196 (16)C21—C261.3945 (19)
N2—H2A0.8551C21—C221.3978 (18)
N2—H2B0.8452C22—C231.3856 (18)
C1—C111.4607 (18)C22—H220.95
C1—H10.95C23—C241.3875 (19)
C2—H2C0.98C23—H230.95
C2—H2D0.98C24—C251.3904 (18)
C2—H2E0.98C25—C261.3916 (19)
C11—C161.390 (2)C25—H250.95
C11—C121.399 (2)C26—H260.95
C12—C131.380 (2)
O3—S1—O2119.20 (7)C14—C13—H13120.1
O3—S1—N2107.96 (7)O1—C14—C15124.27 (15)
O2—S1—N2106.25 (7)O1—C14—C13115.28 (15)
O3—S1—C24107.42 (6)C15—C14—C13120.44 (14)
O2—S1—C24106.39 (6)C14—C15—C16119.35 (15)
N2—S1—C24109.38 (6)C14—C15—H15120.3
C14—O1—C2117.90 (15)C16—C15—H15120.3
C1—N1—C21118.48 (12)C15—C16—C11121.04 (15)
S1—N2—H2A110.9C15—C16—H16119.5
S1—N2—H2B113.8C11—C16—H16119.5
H2A—N2—H2B114.0C26—C21—C22119.53 (12)
N1—C1—C11123.66 (13)C26—C21—N1118.32 (12)
N1—C1—H1118.2C22—C21—N1122.04 (12)
C11—C1—H1118.2C23—C22—C21120.29 (12)
O1—C2—H2C109.5C23—C22—H22119.9
O1—C2—H2D109.5C21—C22—H22119.9
H2C—C2—H2D109.5C22—C23—C24119.74 (12)
O1—C2—H2E109.5C22—C23—H23120.1
H2C—C2—H2E109.5C24—C23—H23120.1
H2D—C2—H2E109.5C23—C24—C25120.64 (12)
C16—C11—C12118.77 (13)C23—C24—S1118.85 (10)
C16—C11—C1123.09 (13)C25—C24—S1120.51 (10)
C12—C11—C1118.13 (13)C24—C25—C26119.57 (13)
C13—C12—C11120.67 (14)C24—C25—H25120.2
C13—C12—H12119.7C26—C25—H25120.2
C11—C12—H12119.7C25—C26—C21120.19 (12)
C12—C13—C14119.73 (15)C25—C26—H26119.9
C12—C13—H13120.1C21—C26—H26119.9
C21—N1—C1—C11175.87 (13)C26—C21—C22—C231.9 (2)
N1—C1—C11—C1611.2 (2)N1—C21—C22—C23178.05 (13)
N1—C1—C11—C12168.42 (16)C21—C22—C23—C241.5 (2)
C16—C11—C12—C130.9 (3)C22—C23—C24—C250.3 (2)
C1—C11—C12—C13178.67 (16)C22—C23—C24—S1179.27 (11)
C11—C12—C13—C141.1 (3)O3—S1—C24—C23163.03 (12)
C2—O1—C14—C150.3 (3)O2—S1—C24—C2334.34 (13)
C2—O1—C14—C13179.64 (17)N2—S1—C24—C2380.04 (12)
C12—C13—C14—O1178.90 (16)O3—S1—C24—C2517.41 (14)
C12—C13—C14—C150.4 (3)O2—S1—C24—C25146.11 (12)
O1—C14—C15—C16179.57 (16)N2—S1—C24—C2599.52 (13)
C13—C14—C15—C160.3 (3)C23—C24—C25—C260.5 (2)
C14—C15—C16—C110.4 (3)S1—C24—C25—C26180.00 (11)
C12—C11—C16—C150.2 (2)C24—C25—C26—C210.0 (2)
C1—C11—C16—C15179.39 (15)C22—C21—C26—C251.2 (2)
C1—N1—C21—C26148.41 (14)N1—C21—C26—C25177.44 (13)
C1—N1—C21—C2235.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.092.9280 (17)166
N2—H2B···N1ii0.852.082.9233 (17)173
C1—H1···O3iii0.952.553.4466 (18)157
C2—H2E···O2iv0.982.593.415 (2)141
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z+1; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC14H14N2O3S
Mr290.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)16.3315 (5), 11.1597 (3), 7.6876 (3)
β (°) 100.661 (1)
V3)1376.92 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.60 × 0.33 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.90, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
10501, 3383, 2821
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.08
No. of reflections3383
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Department of Chemistry and Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare, for their support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, M. K., Singh, H. L., Varshney, S. & Varshney, A. K. (2003). Bioinorg. Chem. Appl. 1, 309–320.  CrossRef CAS Google Scholar
First citationKhalil, R. A., Jalil, A. H. & Abd-Alrazzak, A. Y. (2009). Iran. Chem. Soc. 6, 345–352.  CrossRef CAS Google Scholar
First citationNagpal, P. & Singh, R. V. (2004). Appl. Organomet. Chem. 18, 221–226.  Web of Science CrossRef CAS Google Scholar
First citationSharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271–1278.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. Y., Chen, L. H., Hwang, W. S., Chen, H. S., Chen, H. S. & Hung, C. H. (2004). J. Organomet. Chem. 689, 2192–2200.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds